全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

局域表面等离激元增强荧光研究进展

DOI: 10.1360/N972015-00261, PP. 3169-3179

Keywords: 表面等离激元,金属纳米结构,光学纳米天线,单分子荧光,表面增强,荧光寿命,光发射方向

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属表面增强荧光现象,即表面等离激元与荧光分子、原子、量子点等发光体系的相互作用,是许多应用研究的基础科学问题.近年来该领域在实验和理论方面都取得了很大的进展.研究表明,金属表面等离激元共振不仅能够增强分子的激发过程,也能强烈地调制分子荧光的发射过程,如影响发光的量子效率、弛豫寿命和发射方向等.通过设计微纳金属结构,局域表面等离激元可以有效地改变分子所处的介电局域电磁场环境,进而影响和调控荧光分子的自发辐射过程.实验研究从初始的集体平均性观测,目前已经发展至单纳米结构和单分子水平,从而克服了传统测量中的平均效应,并做到实验测量和理论模拟的有机结合,对揭示单个纳米颗粒层次上的光物理基本规律具有重要意义.本文主要介绍近期与局域表面等离激元增强荧光相关的重要研究进展,具体为表面增强荧光的发光强度、光发射角分布、荧光光谱、荧光弛豫寿命及偏振等方面.

References

[1]  30 Schuller J A, Barnard E S, Cai W, et al. Plasmonics for extreme light concentration and manipulation. Nat Mater, 2010, 9: 193-204
[2]  31 Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7: 442-453
[3]  32 Larsson E M, Langhammer C, Zori? I, et al. Nanoplasmonic probes of catalytic reactions. Science, 2009, 326: 1091-1094
[4]  33 Xu W, Kong J S, Yeh Y E, et al. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat Mater, 2008, 7: 992-996
[5]  34 Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys Rev Lett, 2002, 89: 203002
[6]  35 Fu Y, Zhang J, Lakowicz J R. Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J Am Chem Soc, 2010, 132: 5540-5541
[7]  36 Lu G, Zhang T, Li W, et al. Single-Molecule spontaneous emission in the vicinity of an individual gold nanorod. J Phys Chem C, 2011, 115: 15822-15828
[8]  37 Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett, 2006, 96: 113002
[9]  38 Kuhn S, Hakanson U, Rogobete L, et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an opticalnanoantenna. Phys Rev Lett, 2006, 96: 017402
[10]  39 Novo C, Funston A M, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nano, 2008, 3: 598-602
[11]  40 Liu N, Tang M L, Hentschel M, et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater, 2011, 10: 631-636
[12]  41 Lu G, Liu J, Zhang T, et al. Enhancing molecule fluorescence with asymmetrical plasmonic antennas. Nanoscale, 2013, 5: 6545-6551
[13]  42 Kinkhabwala A, Yu Z, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon, 2009, 3: 654-657
[14]  43 Punj D, Mivelle M, Moparthi S B, et al. A plasmonic ‘antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nat Nano, 2013, 8: 512-516
[15]  44 Khatua S, Paulo P M R, Yuan H, et al. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano, 2014, 8: 4440-4449
[16]  45 Yuan H, Khatua S, Zijlstra P, et al. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angew Chem Int Edit, 2013, 52: 1217-1221
[17]  46 Chen H, Shao L, Li Q, et al. Gold nanorods and their plasmonic properties. Chem Soc Rev, 2013, 42: 2679-2724
[18]  47 Liu S, Huang L, Li J, et al. Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods. J Phys Chem C, 2013, 117: 10636-10642
[19]  48 Ming T, Zhao L, Chen H, et al. Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures. Nano Lett, 2011, 11: 2296-2303
[20]  49 Li X, Kao F, Chuang C, et al. Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. Opt Express, 2010, 18: 11335-11346
[21]  50 Acuna G P, M?ller F M, Holzmeister P, et al. Fluorescence enhancement at docking sites of DNA-Directed Self-Assembled nanoantennas. Science, 2012, 338: 506-510
[22]  51 Busson M P, Rolly B, Stout B, et al. Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA. Nat Comm, 2012, 3: 962
[23]  52 Zhang W, Ding F, Li W D, et al. Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology, 2012, 23: 225301
[24]  53 Lu G, Li W, Zhang T, et al. Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures. ACS Nano, 2012, 6: 1438-1448
[25]  54 Wang Q, Lu G, Hou L, et al. Fluorescence correlation spectroscopy near individual gold nanoparticle. Chem Phys Lett, 2011, 503: 256-261
[26]  55 Lu G, Liu J, Zhang T, et al. Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy. Nanoscale, 2012, 4: 3359-3364
[27]  56 Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission. Nat Comm, 2011, 2: 283
[28]  57 Curto A G, Volpe G, Taminiau T H, et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010, 329: 930-933
[29]  58 Aouani H, Mahboub O, Bonod N, et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett, 2011, 11: 637-644
[30]  59 Taminiaut H, Stefanif D, Segerinkf B, et al. Optical antennas direct single-molecule emission. Nat Photon, 2008, 2: 234-237
[31]  60 Rigneault H, Capoulade J, Dintinger J, et al. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys Rev Lett, 2005, 95: 117401
[32]  61 Shen H, Lu G, Zhang T, et al. Enhanced Single-Molecule spontaneous emission in an optimized nanoantenna with plasmonic gratings. Plasmonic, 2013, 8: 869-875
[33]  62 Shen H, Lu G, He Y, et al. Directional and enhanced spontaneous emission with a corrugated metal probe. Nanoscale, 2014, 6: 7512-7518
[34]  63 Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat Photon, 2014, 8: 835-840
[35]  64 Fort E, Gresillon S. Surface enhanced fluorescence. J Phys D Appl Phys, 2008, 41: 013001
[36]  65 Ringler M, Schwemer A, Wunderlich M, et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett, 2008, 100: 203002
[37]  66 Ming T, Chen H, Jiang R, et al. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J Phys Chem Lett, 2012, 3: 191-202
[38]  67 Russell K J, Liu T, Cui S, et al. Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photon, 2012, 6: 459-462
[39]  68 Jung J, Yoo H, Stellacci F, et al. Two-photon excited fluorescence enhancement for ultrasensitive DNA detection on Large-Area gold nanopatterns. Adv Mater, 2010, 22: 2542-2546
[40]  69 Zhang T, Lu G, Liu J, et al. Strong two-photon fluorescence enhanced jointly by dipolar and quadrupolar modes of a single plasmonic nanostructure. Appl Phys Lett, 2012, 101: 51109
[41]  70 Wenseleers W, Stellacci F, Meyer-Friedrichsen T, et al. Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. J Phys Chem B, 2002, 106: 6853-6863
[42]  71 Zhao T, Yu K, Li L, et al. Gold nanorod enhanced Two-Photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. ACS Appl Mater Interfaces, 2014, 6: 2700-2708
[43]  72 Wei H, Tian X, Pan D, et al. Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure. Nano Lett, 2015, 15: 560-564
[44]  73 Lakowicz J R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal Biochem, 2005, 337: 171-194
[45]  74 Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat Nanotechnol, 2013, 8: 506-511
[46]  1 Valeur B. Molecular Fluorescence: Principles and Applications. Weinheim: Wiley-VCH, 2001
[47]  2 Zander C, Enderlein J, Keller R A. Single Molecule Detection in Solution: Methods and Applications. Weinheim: Wiley-VCH, 2002
[48]  3 Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA, 2000, 97: 8206-8210
[49]  4 Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313: 1642-1645
[50]  5 Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 2006, 91: 4258-4272
[51]  6 Rust M J, Bates M, Zhuang X. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. Nat Methods, 2006, 3: 793-795
[52]  7 Kollerd D M, Hohenaua A, Ditlbacherh H, et al. Organic plasmon-emitting diode. Nat Photon, 2008, 2: 684-687
[53]  8 Xu T, Wu Y K, Luo X, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Comm, 2010, 1: 59
[54]  9 Buckley S, Rivoire K, Vuckovid J. Engineered quantum dot single-photon sources. Rep Prog Phys, 2012, 75: 126503
[55]  10 Shimizu K T, Woo W K, Fisher B R, et al. Surface-enhanced emission from single semiconductor nanocrystals. Phys Rev Lett, 2002, 89: 117401
[56]  11 Farahani J N, Pohl D W, Eisler H J, et al. Single quantum dot coupled to a scanning optical antenna: A tunable super emitter. Phys Rev Lett, 2005, 95: 017402
[57]  12 Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA, 2003, 100: 13549-13554
[58]  13 Drexhage K H. Interaction of light with monomolecular dye lasers. In: Wolfe E, ed. Progress in Optics. Amsterdam: North-Holland, 1974. 161-232
[59]  14 Weitz D A, Gersten J I, Garoff S, et al. Fluorescent lifetimes of molecules on silver-island films. Opt Lett, 1982, 7: 89-91
[60]  15 Fleischmann M, Hendra P J, Mcquillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett, 1974, 26: 163-166
[61]  16 Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem, 1977, 84: 1-20
[62]  17 Lu G, Shen H, Cheng B, et al. How surface-enhanced chemiluminescence depends on the distance from a corrugated metal film. Appl Phys Lett, 2006, 89: 223128
[63]  18 Shen H, Cheng B, Lu G, et al. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology, 2006, 17: 4274
[64]  19 Lakowicz J, Geddes C, Gryczynski I, et al. Advances in Surface-Enhanced fluorescence. J Fluoresc, 2004, 14: 425-441
[65]  20 Zhang T, Lu G, Li W, et al. Optimally designed nanoshell and Matryoshka-Nanoshell as a Plasmonic-Enhanced fluorescence probe. J Phys Chem C, 2012, 116: 8804-8812
[66]  21 Shen H, Lu G, Zhang T, et al. Molecule fluorescence modified by a slit-based nanoantenna with dual gratings. J Opt Soc Am B, 2013, 30: 2420-2426
[67]  22 Lukosz W, Kunz R E. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. J Opt Soc Am, 1977, 67: 1615-1619
[68]  23 Koyama K, Yoshita M, Baba M, et al. High collection efficiency in fluorescence microscopy with a solid immersion lens. Appl Phys Lett, 1999, 75: 1667
[69]  24 Leek G, Chen X W, Eghlidi H, et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat Photon, 2011, 5: 166-169
[70]  25 Sun G, Khurgin J B, Soref R A. Practical enhancement of photoluminescence by metal nanoparticles. Appl Phys Lett, 2009, 94: 101103
[71]  26 Chou R Y, Lu G, Shen H, et al. A hybrid nanoantenna for highly enhanced directional spontaneous emission. J Appl Phys, 2014, 115: 244310
[72]  27 Purcell E M. Spontaneous emission probabilities at radio frequencies. Phys Rev, 1946, 69: 681
[73]  28 Ford G W, Weber W H. Electromagnetic interactions of molecules with metal surfaces. Phys Reports, 1984, 113: 197
[74]  29 Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 2006, 311: 189-193
[75]  75 Harris S. Emergence of the e-book. Nat Photon, 2010, 4: 748
[76]  76 Liu X, Galfsky T, Sun Z, et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photon, 2015, 9: 30-34
[77]  77 Tame M S, Mcenery K R, Ozdemir S K, et al. Quantum plasmonics. Nat Phys, 2013, 9: 329-340
[78]  78 Zanotto S, Mezzapesa F P, Bianco F, et al. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nat Phys, 2014, 10: 830-834
[79]  79 Decker M, Staude I, Shishkin I I, et al. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials. Nat Commun, 2013, 4: 2949
[80]  80 Chen X W, Agio M, Sandoghdar V. Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. Phys Rev Lett, 2012, 108: 233001
[81]  81 Jin C, Johne R, Swinkels M Y, et al. Ultrafast non-local control of spontaneous emission. Nat Nanotechnol, 2014, 9: 886-890
[82]  82 Xiao Y, Liu Y, Li B, et al. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys Rev A, 2012, 85: 031805
[83]  83 Cho C, Aspetti C O, Park J, et al. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat Photon, 2013, 7: 285-289
[84]  84 Hendry E, Carpy T, Johnston J, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol, 2010, 5: 783-787
[85]  85 Ji B, Giovanelli E, Habert B, et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat Nanotechnol, 2015, 10: 170-175
[86]  86 Lakowicz J. Plasmonics in biology and Plasmon-Controlled fluorescence. Plasmonics, 2006, 1: 5-33
[87]  87 Choy J T, Hausmann B J M, Babinec T M, et al. Enhanced single-photon emission from a diamond-silver aperture. Nat Photon, 2011, 5: 738-743
[88]  88 Shafiei F, Monticone F, Le K Q, et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol, 2013, 8: 95-99
[89]  89 Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445: 896-899

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133