30 Schuller J A, Barnard E S, Cai W, et al. Plasmonics for extreme light concentration and manipulation. Nat Mater, 2010, 9: 193-204
[2]
31 Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7: 442-453
[3]
32 Larsson E M, Langhammer C, Zori? I, et al. Nanoplasmonic probes of catalytic reactions. Science, 2009, 326: 1091-1094
[4]
33 Xu W, Kong J S, Yeh Y E, et al. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat Mater, 2008, 7: 992-996
[5]
34 Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys Rev Lett, 2002, 89: 203002
[6]
35 Fu Y, Zhang J, Lakowicz J R. Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J Am Chem Soc, 2010, 132: 5540-5541
[7]
36 Lu G, Zhang T, Li W, et al. Single-Molecule spontaneous emission in the vicinity of an individual gold nanorod. J Phys Chem C, 2011, 115: 15822-15828
[8]
37 Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett, 2006, 96: 113002
[9]
38 Kuhn S, Hakanson U, Rogobete L, et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an opticalnanoantenna. Phys Rev Lett, 2006, 96: 017402
[10]
39 Novo C, Funston A M, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nano, 2008, 3: 598-602
[11]
40 Liu N, Tang M L, Hentschel M, et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater, 2011, 10: 631-636
[12]
41 Lu G, Liu J, Zhang T, et al. Enhancing molecule fluorescence with asymmetrical plasmonic antennas. Nanoscale, 2013, 5: 6545-6551
[13]
42 Kinkhabwala A, Yu Z, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon, 2009, 3: 654-657
[14]
43 Punj D, Mivelle M, Moparthi S B, et al. A plasmonic ‘antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nat Nano, 2013, 8: 512-516
[15]
44 Khatua S, Paulo P M R, Yuan H, et al. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano, 2014, 8: 4440-4449
[16]
45 Yuan H, Khatua S, Zijlstra P, et al. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angew Chem Int Edit, 2013, 52: 1217-1221
[17]
46 Chen H, Shao L, Li Q, et al. Gold nanorods and their plasmonic properties. Chem Soc Rev, 2013, 42: 2679-2724
[18]
47 Liu S, Huang L, Li J, et al. Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods. J Phys Chem C, 2013, 117: 10636-10642
[19]
48 Ming T, Zhao L, Chen H, et al. Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures. Nano Lett, 2011, 11: 2296-2303
[20]
49 Li X, Kao F, Chuang C, et al. Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. Opt Express, 2010, 18: 11335-11346
[21]
50 Acuna G P, M?ller F M, Holzmeister P, et al. Fluorescence enhancement at docking sites of DNA-Directed Self-Assembled nanoantennas. Science, 2012, 338: 506-510
[22]
51 Busson M P, Rolly B, Stout B, et al. Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA. Nat Comm, 2012, 3: 962
[23]
52 Zhang W, Ding F, Li W D, et al. Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology, 2012, 23: 225301
[24]
53 Lu G, Li W, Zhang T, et al. Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures. ACS Nano, 2012, 6: 1438-1448
[25]
54 Wang Q, Lu G, Hou L, et al. Fluorescence correlation spectroscopy near individual gold nanoparticle. Chem Phys Lett, 2011, 503: 256-261
[26]
55 Lu G, Liu J, Zhang T, et al. Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy. Nanoscale, 2012, 4: 3359-3364
[27]
56 Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission. Nat Comm, 2011, 2: 283
[28]
57 Curto A G, Volpe G, Taminiau T H, et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010, 329: 930-933
[29]
58 Aouani H, Mahboub O, Bonod N, et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett, 2011, 11: 637-644
[30]
59 Taminiaut H, Stefanif D, Segerinkf B, et al. Optical antennas direct single-molecule emission. Nat Photon, 2008, 2: 234-237
[31]
60 Rigneault H, Capoulade J, Dintinger J, et al. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys Rev Lett, 2005, 95: 117401
[32]
61 Shen H, Lu G, Zhang T, et al. Enhanced Single-Molecule spontaneous emission in an optimized nanoantenna with plasmonic gratings. Plasmonic, 2013, 8: 869-875
[33]
62 Shen H, Lu G, He Y, et al. Directional and enhanced spontaneous emission with a corrugated metal probe. Nanoscale, 2014, 6: 7512-7518
[34]
63 Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat Photon, 2014, 8: 835-840
[35]
64 Fort E, Gresillon S. Surface enhanced fluorescence. J Phys D Appl Phys, 2008, 41: 013001
[36]
65 Ringler M, Schwemer A, Wunderlich M, et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett, 2008, 100: 203002
[37]
66 Ming T, Chen H, Jiang R, et al. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J Phys Chem Lett, 2012, 3: 191-202
[38]
67 Russell K J, Liu T, Cui S, et al. Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photon, 2012, 6: 459-462
[39]
68 Jung J, Yoo H, Stellacci F, et al. Two-photon excited fluorescence enhancement for ultrasensitive DNA detection on Large-Area gold nanopatterns. Adv Mater, 2010, 22: 2542-2546
[40]
69 Zhang T, Lu G, Liu J, et al. Strong two-photon fluorescence enhanced jointly by dipolar and quadrupolar modes of a single plasmonic nanostructure. Appl Phys Lett, 2012, 101: 51109
[41]
70 Wenseleers W, Stellacci F, Meyer-Friedrichsen T, et al. Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. J Phys Chem B, 2002, 106: 6853-6863
[42]
71 Zhao T, Yu K, Li L, et al. Gold nanorod enhanced Two-Photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. ACS Appl Mater Interfaces, 2014, 6: 2700-2708
[43]
72 Wei H, Tian X, Pan D, et al. Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure. Nano Lett, 2015, 15: 560-564
[44]
73 Lakowicz J R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal Biochem, 2005, 337: 171-194
[45]
74 Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat Nanotechnol, 2013, 8: 506-511
[46]
1 Valeur B. Molecular Fluorescence: Principles and Applications. Weinheim: Wiley-VCH, 2001
[47]
2 Zander C, Enderlein J, Keller R A. Single Molecule Detection in Solution: Methods and Applications. Weinheim: Wiley-VCH, 2002
[48]
3 Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA, 2000, 97: 8206-8210
[49]
4 Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313: 1642-1645
[50]
5 Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 2006, 91: 4258-4272
10 Shimizu K T, Woo W K, Fisher B R, et al. Surface-enhanced emission from single semiconductor nanocrystals. Phys Rev Lett, 2002, 89: 117401
[56]
11 Farahani J N, Pohl D W, Eisler H J, et al. Single quantum dot coupled to a scanning optical antenna: A tunable super emitter. Phys Rev Lett, 2005, 95: 017402
[57]
12 Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA, 2003, 100: 13549-13554
[58]
13 Drexhage K H. Interaction of light with monomolecular dye lasers. In: Wolfe E, ed. Progress in Optics. Amsterdam: North-Holland, 1974. 161-232
[59]
14 Weitz D A, Gersten J I, Garoff S, et al. Fluorescent lifetimes of molecules on silver-island films. Opt Lett, 1982, 7: 89-91
[60]
15 Fleischmann M, Hendra P J, Mcquillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett, 1974, 26: 163-166
[61]
16 Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem, 1977, 84: 1-20
[62]
17 Lu G, Shen H, Cheng B, et al. How surface-enhanced chemiluminescence depends on the distance from a corrugated metal film. Appl Phys Lett, 2006, 89: 223128
[63]
18 Shen H, Cheng B, Lu G, et al. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology, 2006, 17: 4274
[64]
19 Lakowicz J, Geddes C, Gryczynski I, et al. Advances in Surface-Enhanced fluorescence. J Fluoresc, 2004, 14: 425-441
[65]
20 Zhang T, Lu G, Li W, et al. Optimally designed nanoshell and Matryoshka-Nanoshell as a Plasmonic-Enhanced fluorescence probe. J Phys Chem C, 2012, 116: 8804-8812
[66]
21 Shen H, Lu G, Zhang T, et al. Molecule fluorescence modified by a slit-based nanoantenna with dual gratings. J Opt Soc Am B, 2013, 30: 2420-2426
[67]
22 Lukosz W, Kunz R E. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. J Opt Soc Am, 1977, 67: 1615-1619
[68]
23 Koyama K, Yoshita M, Baba M, et al. High collection efficiency in fluorescence microscopy with a solid immersion lens. Appl Phys Lett, 1999, 75: 1667
[69]
24 Leek G, Chen X W, Eghlidi H, et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat Photon, 2011, 5: 166-169
[70]
25 Sun G, Khurgin J B, Soref R A. Practical enhancement of photoluminescence by metal nanoparticles. Appl Phys Lett, 2009, 94: 101103
[71]
26 Chou R Y, Lu G, Shen H, et al. A hybrid nanoantenna for highly enhanced directional spontaneous emission. J Appl Phys, 2014, 115: 244310
[72]
27 Purcell E M. Spontaneous emission probabilities at radio frequencies. Phys Rev, 1946, 69: 681
[73]
28 Ford G W, Weber W H. Electromagnetic interactions of molecules with metal surfaces. Phys Reports, 1984, 113: 197
[74]
29 Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 2006, 311: 189-193
[75]
75 Harris S. Emergence of the e-book. Nat Photon, 2010, 4: 748
[76]
76 Liu X, Galfsky T, Sun Z, et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photon, 2015, 9: 30-34
[77]
77 Tame M S, Mcenery K R, Ozdemir S K, et al. Quantum plasmonics. Nat Phys, 2013, 9: 329-340
[78]
78 Zanotto S, Mezzapesa F P, Bianco F, et al. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nat Phys, 2014, 10: 830-834
[79]
79 Decker M, Staude I, Shishkin I I, et al. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials. Nat Commun, 2013, 4: 2949
[80]
80 Chen X W, Agio M, Sandoghdar V. Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. Phys Rev Lett, 2012, 108: 233001
[81]
81 Jin C, Johne R, Swinkels M Y, et al. Ultrafast non-local control of spontaneous emission. Nat Nanotechnol, 2014, 9: 886-890
[82]
82 Xiao Y, Liu Y, Li B, et al. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys Rev A, 2012, 85: 031805
[83]
83 Cho C, Aspetti C O, Park J, et al. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat Photon, 2013, 7: 285-289
[84]
84 Hendry E, Carpy T, Johnston J, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol, 2010, 5: 783-787
[85]
85 Ji B, Giovanelli E, Habert B, et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat Nanotechnol, 2015, 10: 170-175
[86]
86 Lakowicz J. Plasmonics in biology and Plasmon-Controlled fluorescence. Plasmonics, 2006, 1: 5-33
[87]
87 Choy J T, Hausmann B J M, Babinec T M, et al. Enhanced single-photon emission from a diamond-silver aperture. Nat Photon, 2011, 5: 738-743
[88]
88 Shafiei F, Monticone F, Le K Q, et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol, 2013, 8: 95-99
[89]
89 Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445: 896-899