全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

流场中复杂液滴的变形运动与吸附

DOI: 10.1360/N972014-01322, PP. 3349-3366

Keywords: 多相流,复杂液滴,复杂界面,复合液滴,变形,吸附

Full-Text   Cite this paper   Add to My Lib

Abstract:

液滴动力学是多相流热物理学的重要基础研究方向.随着科学研究的逐步深入和工业技术的不断发展,人们发现液滴的界面可由多种物质分子组成且可出现复杂的结构,如石油工程中表面活性剂、固体颗粒等物质吸附于油水液滴界面,细胞等生物液滴由具有复杂分子组成和结构的膜包裹等.研究发现复杂的分子组成和结构使液滴界面具有剪切弹性、面积扩张弹性、抗弯特性等显著不同于普通液滴表面张力的力学性质,而复杂的界面力与流场黏性力、壁面物理化学吸附力等相互耦合导致液滴在流场中展现复杂的变形、运动、吸附等动力学行为.本文介绍了复杂液滴界面的力学性质及其模型描述,综述了近年来关于流场中复杂界面液滴的变形、运动、吸附行为的研究进展,并给出了后续研究的建议.

References

[1]  8 Abkarian M, Faivre M, Horton R, et al. Cellular-scale hydrodynamics. Biomed Mater, 2008, 3: 034011
[2]  9 Abkarian M, Viallat A. Vesicles and red blood cells in shear flow. Soft Matter, 2008, 4: 653-657
[3]  10 Vlahovska P M, Podgorski T, Misbah C. Vesicles and red blood cells in flow: From individual dynamics to rheology. Comptes Rendus Phys, 2009, 10: 775-789
[4]  11 Wan J D, Forsyth A M, Stone H A. Red blood cell dynamics: From cell deformation to atp release. Integr Biol-UK, 2011, 3: 972-981
[5]  12 Li X J, Vlahovska P M, Karniadakis G E. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter, 2013, 9: 28-37
[6]  13 Vlahovska P M, Barthes-Biesel D, Misbah C. Flow dynamics of red blood cells and their biomimetic counterparts. Comptes Rendus Phys, 2013, 14: 451-458
[7]  14 Vitkova V, Mader M A, Polack B, et al. Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys J, 2008, 95: L33-L35
[8]  15 Bagchi P, Kalluri R M. Rheology of a dilute suspension of liquid-filled elastic capsules. Phys Rev E, 2010, 81: 056320
[9]  16 Farutin A, Misbah C. Rheology of vesicle suspensions under combined steady and oscillating shear flows. J Fluid Mech, 2012, 700: 362-381
[10]  17 Tan M H Y, Le D V, Chiam K H. Hydrodynamic diffusion of a suspension of elastic capsules in bounded simple shear flow. Soft Matter, 2012, 8: 2243-2251
[11]  18 Thiebaud M, Misbah C. Rheology of a vesicle suspension with finite concentration: A numerical study. Phys Rev E, 2013, 88: 062707
[12]  19 Zhao H, Shaqfeh E S G. The dynamics of a non-dilute vesicle suspension in a simple shear flow. J Fluid Mech, 2013, 725: 709-731
[13]  20 Gires P Y, Srivastav A, Misbah C, et al. Pairwise hydrodynamic interactions and diffusion in a vesicle suspension. Phys Fluids, 2014, 26: 013304
[14]  21 Gross M, Krueger T, Varnik F. Rheology of dense suspensions of elastic capsules: Normal stresses, yield stress, jamming and confinement effects. Soft Matter, 2014, 10: 4360-4372
[15]  22 Kaoui B, Jonk R J W, Harting J. Interplay between microdynamics and macrorheology in vesicle suspensions. Soft Matter, 2014, 10: 4735-4742
[16]  23 McWhirter J L, Noguchi H, Gompper G. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc Natl Acad Sci USA, 2009, 106: 6039-6043
[17]  24 Fedosov D A, Pan W X, Caswell B, et al. Predicting human blood viscosity in silico. Proc Natl Acad Sci USA, 2011, 108: 11772-11777
[18]  25 Somasundaran P, Zhang L. Adsorption of surfactants on minerals for wettability control in improved oil recovery processes. J Petrol Sci Eng, 2006, 52: 198-212
[19]  26 Bera A, Ojha K, Mandal A, et al. Interfacial tension and phase behavior of surfactant-brine-oil system. Colloid Surf A-Physicochem Eng Asp, 2011, 383: 114-119
[20]  27 Ravari R R, Strand S, Austad T. Combined surfactant-enhanced gravity drainage (segd) of oil and the wettability alteration in carbonates: The effect of rock permeability and interfacial tension (ift). Energ Fuel, 2011, 25: 2083-2088
[21]  28 Wang Y, Xu H, Yu W, et al. Surfactant induced reservoir wettability alteration: Recent theoretical and experimental advances in enhanced oil recovery. Petrol Sci, 2011, 8: 463-476
[22]  29 Iglauer S, Ferno M A, Shearing P, et al. Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. J Colloid Interf Sci, 2012, 375: 187-192
[23]  30 Bai B, Luo Z, Lu T, et al. Numerical simulation of cell adhesion and detachment in microfluidics. J Mech Med Biol, 2013, 13: 1350002
[24]  31 Chaffer C L, Weinberg R A. A perspective on cancer cell metastasis. Science, 2011, 331: 1559-1564
[25]  32 Nagrath S, Sequist L V, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007, 450: 1235-1239
[26]  33 Cheng X H, Irimia D, Dixon M, et al. A microfluidic device for practical label-free cd4+t cell counting of hiv-infected subjects. Lab Chip, 2007, 7: 170-178
[27]  34 Datta S S, Abbaspourrad A, Amstad E, et al. 25th anniversary article: Double emulsion templated solid microcapsules: Mechanics and controlled release. Adv Mater, 2014, 26: 2205-2218
[28]  35 Dinsmore A D, Hsu M F, Nikolaides M G, et al. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science, 2002, 298: 1006-1009
[29]  36 Herranz-Blanco B, Arriaga L R, Makila E, et al. Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug release. Lab Chip, 2014, 14: 1083-1086
[30]  37 Liggieri L, Miller R. Relaxation of surfactants adsorption layers at liquid interfaces. Curr Opin Colloid Interf Sci, 2010, 15: 256-263
[31]  38 Baret J C. Surfactants in droplet-based microfluidics. Lab Chip, 2012, 12: 422-433
[32]  39 Bykov A, Liggieri L, Noskov B, et al. Surface dilational rheological properties in the nonlinear domain. Adv Colloid Interf Sci, 2015, 222: 110-118
[33]  40 Sagis L M, Fischer P. Nonlinear rheology of complex fluid-fluid interfaces. Curr Opin Colloid Interf Sci, 2014, 19: 520-529
[34]  41 Barthes-Biesel D. Capsule motion in flow: Deformation and membrane buckling. Comptes Rendus Phys, 2009, 10: 764-774
[35]  42 Guido S, Tomaiuolo G. Microconfined flow behavior of red blood cells in vitro. Comptes Rendus Phys, 2009, 10: 751-763
[36]  43 Finken R, Kessler S, Seifert U. Micro-capsules in shear flow. J Phys-Condens Mat, 2011, 23: 184113
[37]  44 Abreu D, Levant M, Steinberg V, et al. Fluid vesicles in flow. Adv Colloid Interf Sci, 2014, 208: 129-141
[38]  45 Freund J B. Numerical simulation of flowing blood cells. Annu Rev Fluid Mech, 2014, 46: 67-95
[39]  46 Viallat A, Abkarian M. Red blood cell: From its mechanics to its motion in shear flow. Int J Lab Hematol, 2014, 36: 237-243
[40]  47 Helfrich W. Elastic propeties of lipid bilayers: Theory and possible experiments. Z Naturforsch C, 1973, 28: 693-703
[41]  48 Zhongcan O Y, Helfrich W. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A, 1989, 39: 5280-5288
[42]  49 Dobereiner H G. Properties of giant vesicles. Curr Opin Colloid Interf Sci, 2000, 5: 256-263
[43]  50 Ramanujan S, Pozrikidis C. Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities. J Fluid Mech, 1998, 361: 117-143
[44]  51 Barthes-Biesel D, Diaz A, Dhenin E. Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J Fluid Mech, 2002, 460: 211-222
[45]  52 Li X Y, Sarkar K. Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. J Comput Phys, 2008, 227: 4998-5018
[46]  53 Skalak R, Tozeren A, Zarda R P, et al. Strain energy function of red blood cell membranes. Biophys J, 1973, 13: 245-280
[47]  54 Lac E, Barthes-Biesel D, Pelekasis N A, et al. Spherical capsules in three-dimensional unbounded stokes flows: Effect of the membrane constitutive law and onset of buckling. J Fluid Mech, 2004, 516: 303-334
[48]  55 Taylor G I. The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A, 1934, 146: 501-523
[49]  56 Rallison J M. The deformation of small viscous drops and bubbles in shear flows. Annu Rev Fluid Mech, 1984, 16: 45-66
[50]  57 Stone H A. Dynamics of drop deformation and breakup in viscous fluids. Annu Rev Fluid Mech, 1994, 26: 65-102
[51]  58 Vlahovska P M, Loewenberg M, Blawzdziewicz J. Deformation of a surfactant-covered drop in a linear flow. Phys Fluids, 2005, 17: 103103
[52]  59 Vlahovska P M, Blawzdziewicz J, Loewenberg M. Small-deformation theory for a surfactant-covered drop in linear flows. J Fluid Mech, 2009, 624: 293-337
[53]  60 Komrakova A E, Shardt O, Eskin D, et al. Lattice boltzmann simulations of drop deformation and breakup in shear flow. Int J Multiph Flow, 2014, 59: 24-43
[54]  61 Muradoglu M, Tryggvason G. Simulations of soluble surfactants in 3d multiphase flow. J Comput Phys, 2014, 274: 737-757
[55]  62 Luo Z, He L, Bai B. Three-dimensional numerical simulation of dynamics of elastic capsules (in Chinese). J Eng Thermophys, 2014, 35: 1132-1135 [骆政园, 和龙, 白博峰. 具有复杂界面的三维弹性液滴动力学模拟. 工程热物理学报, 2014, 35: 1132-
[56]  63 Breyiannis G, Pozrikidis C. Simple shear flow of suspensions of elastic capsules. Theor Comput Fluid Dyn, 2000, 13: 327-347
[57]  64 Sui Y, Chew Y T, Low H T. A lattice Boltzmann study on the large deformation of red blood cells in shear flow. Int J Mod Phys C, 2007, 18: 993-1011
[58]  65 Sui Y, Chew Y T, Roy P, et al. Transient deformation of elastic capsules in shear flow: Effect of membrane bending stiffness. Phys Rev E, 2007, 75: 066301
[59]  66 Gao T, Hu H H. Deformation of elastic particles in viscous shear flow. J Comput Phys, 2009, 228: 2132-2151
[60]  67 Sui Y, Chew Y T, Roy P, et al. Inertia effect on the transient deformation of elastic capsules in simple shear flow. Comput Fluids, 2009, 38: 49-59
[61]  68 Sui Y, Chen X B, Chew Y T, et al. Numerical simulation of capsule deformation in simple shear flow. Comput Fluids, 2010, 39: 242-250
[62]  69 Eggleton C D, Popel A S. Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids, 1998, 10: 1834-1845
[63]  70 Kwak S, Pozrikidis C. Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys Fluids, 2001, 13: 1234-1242
[64]  71 Pozrikidis C. Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech, 2001, 440: 269-291
[65]  72 Pozrikidis C. Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng, 2003, 31: 1194-1205
[66]  73 Lac E, Barthes-Biesel D. Deformation of a capsule in simple shear flow: Effect of membrane prestress. Phys Fluids, 2005, 17: 072105
[67]  74 Le D V. Effect of bending stiffness on the deformation of liquid capsules enclosed by thin shells in shear flow. Phys Rev E, 2010, 82: 016318
[68]  75 Sui Y, Low H T, Chew Y T, et al. A front-tracking lattice boltzmann method to study flow-induced deformation of three-dimensional capsules. Comput Fluids, 2010, 39: 499-511
[69]  76 Foessel E, Walter J, Salsac A V, et al. Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow. J Fluid Mech, 2011, 672: 477-486
[70]  77 Le D V, Tan Z J. Large deformation of liquid capsules enclosed by thin shells immersed in the fluid. J Comput Phys, 2011, 229: 4097-4116
[71]  78 Bai B F, Luo Z Y, Wang S Q, et al. Inertia effect on deformation of viscoelastic capsules in microscale flows. Microfluid Nanofluid, 2013, 14: 817-829
[72]  79 Barthes-Biesel D, Rallison J M. The time-dependent deformation of a capsule freely suspended in a linear shear-flow. J Fluid Mech, 1981, 113: 251-267
[73]  80 Doddi S K, Bagchi P. Lateral migration of a capsule in a plane poiseuille flow in a channel. Int J Multiph Flow, 2008, 34: 966-986
[74]  81 Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys, 2005, 77: 977-1026
[75]  82 Popel A S, Johnson P C. Microcirculation and hemorheology. Ann Rev Fluid Mech, 2005, 37: 43-69
[76]  83 Vennemann P, Lindken R, Westerweel J. In vivo whole-field blood velocity measurement techniques. Exper Fluids, 2007, 42: 495-511
[77]  84 Bark D L, Ku D N. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomech, 2010, 43: 2970-2977
[78]  189 Krasik E F, Yee K L, Hammer D A. Adhesive dynamics simulation of neutrophil arrest with deterministic activation. Biophys J, 2006, 91: 1145-1155
[79]  190 Caputo K E, Lee D, King M R, et al. Adhesive dynamics simulations of the shear threshold effect for leukocytes. Biophys J, 2007, 92: 787-797
[80]  191 Caputo K E, Hammer D A. Adhesive dynamics simulation of g-protein-mediated chemokine-activated neutrophil adhesion. Biophys J, 2009, 96: 2989-3004
[81]  192 N’Dri N A, Shyy W, Tran-Soy-Tay R. Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J, 2003, 85: 2273-2286
[82]  193 Khismatullin D B, Truskey G A. A 3d numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvasc Res, 2004, 68: 188-202
[83]  194 Jadhav S, Eggleton C D, Konstantopoulos K. A 3-d computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys J, 2005, 88: 96-104
[84]  195 Khismatullin D B, Truskey G A. Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity. Phys Fluids, 2005, 17: 031505
[85]  196 Pappu V, Bagchi P. 3d computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput Biol Med, 2008, 38: 738-753
[86]  197 Pappu V, Doddi S K, Bagchi P. A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J Theor Biol, 2008, 254: 483-498
[87]  198 Luo Z Y, Xu F, Lu T J, et al. Direct numerical simulation of detachment of single captured leukocyte under different flow conditions. J Mech Med Biol, 2011, 11: 273-284
[88]  199 Luo Z Y, Wang S Q, He L, et al. Front tracking simulation of cell detachment dynamic mechanism in microfluidics. Chem Eng Sci, 2013, 97: 394-405
[89]  179 Lasky L A. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Ann Rev Biochem, 1995, 64: 113-139
[90]  180 McEver R P, Zhu C. Rolling cell adhesion. Annu Rev Cell Dev Biol, 2010, 26: 363-396
[91]  181 Fenz S F, Bihr T, Merkel R, et al. Switching from ultraweak to strong adhesion. Adv Mater, 2011, 23: 2622-2626
[92]  182 Cantat I, Misbah C. Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys Rev Lett, 1999, 83: 880-883
[93]  183 Seifert U. Hydrodynamic lift on bound vesicles. Phys Rev Lett, 1999, 83: 876-879
[94]  184 Abkarian M, Lartigue C, Viallat A. Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force. Phys Rev Lett, 2002, 88: 068103
[95]  185 Abkarian M, Viallat A. Dynamics of vesicles in a wall-bounded shear flow. Biophys J, 2005, 89: 1055-1066
[96]  186 Chang K C, Tees D F J, Hammer D A. The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion. Proc Natl Acad Sci USA, 2000, 97: 11262-11267
[97]  187 King M R, Hammer D A. Multiparticle adhesive dynamics: Hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad Sci USA, 2001, 98: 14919-14924
[98]  188 Caputo K E, Hammer D A. Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations. Biophys J, 2005, 89: 187-200
[99]  189 Krasik E F, Yee K L, Hammer D A. Adhesive dynamics simulation of neutrophil arrest with deterministic activation. Biophys J, 2006, 91: 1145-1155
[100]  190 Caputo K E, Lee D, King M R, et al. Adhesive dynamics simulations of the shear threshold effect for leukocytes. Biophys J, 2007, 92: 787-797
[101]  191 Caputo K E, Hammer D A. Adhesive dynamics simulation of g-protein-mediated chemokine-activated neutrophil adhesion. Biophys J, 2009, 96: 2989-3004
[102]  1 Fischer P, Erni P. Emulsion drops in external flow fields—The role of liquid interfaces. Curr Opin Colloid In, 2007, 12: 196-205
[103]  2 Karbaschi M, Lotfi M, Kragel J, et al. Rheology of interfacial layers. Curr Opin Colloid Interf Sci, 2014, 19: 514-519
[104]  3 Langevin D. Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu Rev Fluid Mech, 2014, 46: 47-65
[105]  4 Mendoza A J, Guzman E, Martinez-Pedrero F, et al. Particle laden fluid interfaces: Dynamics and interfacial rheology. Adv Colloid Interf, 2014, 206: 303-319
[106]  5 Schwarz U S, Safran S A. Physics of adherent cells. Rev Mod Phys, 2013, 85: 1327-1381
[107]  6 Barthes-Biesel D. Modeling the motion of capsules in flow. Curr Opin Colloid Interf Sci, 2011, 16: 3-12
[108]  7 Neubauer M P, Poehlmann M, Fery A. Microcapsule mechanics: From stability to function. Adv Colloid Interf, 2014, 207: 65-80
[109]  85 Luo Z Y, Wang S Q, He L, et al. Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow. Soft Matter, 2013, 9: 9651-9660
[110]  86 Di Carlo D. Inertial microfluidics. Lab Chip, 2009, 9: 3038-3046
[111]  87 Di Carlo D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA, 2007, 104: 18892-18897
[112]  88 Hur S C, Henderson-MacLennan N K, McCabe E R B, et al. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip, 2011, 11: 912-920
[113]  89 Luo Z, He L, Bai B. Deformation of spherical compound capsules in simple shear flow. J Fluid Mech, 2015, 775: 77-104
[114]  90 Luo Z Y, He L, Xu F, et al. Three-dimensional numerical simulation of vesicle dynamics in microscale shear flows. J Nanosci Nanotechnol, 2015, 15: 3081-3086
[115]  91 Noguchi H, Gompper G. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Natl Acad Sci USA, 2005, 102: 14159-14164
[116]  92 Danker G, Vlahovska P M, Misbah C. Vesicles in poiseuille flow. Phys Rev Lett, 2009, 102: 148102
[117]  93 Kaoui B, Biros G, Misbah C. Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys Rev Lett, 2009, 103: 188101
[118]  94 Coupier G, Farutin A, Minetti C, et al. Shape diagram of vesicles in poiseuille flow. Phys Rev Lett, 2012, 108: 178106
[119]  95 Shi L L, Pan T W, Glowinski R. Deformation of a single red blood cell in bounded poiseuille flows. Phys Rev E, 2012, 85: 016307
[120]  96 Kuriakose S, Dimitrakopoulos P. Deformation of an elastic capsule in a rectangular microfluidic channel. Soft Matter, 2013, 9: 4284-4296
[121]  97 Fedosov D A, Peltomaeki M, Gompper G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter, 2014, 10: 4258-4267
[122]  98 Seifert U. Configurations of fluid membranes and vesicles. Adv Phys, 1997, 46: 113-137
[123]  99 Bassereau P, Sorre B, Levy A. Bending lipid membranes: Experiments after W. Helfrich’s model. Adv Colloid Interf, 2014, 208: 47-57
[124]  100 Lipowsky R. Coupling of bending and stretching deformations in vesicle membranes. Adv Colloid Interf, 2014, 208: 14-24
[125]  101 Tu Z C, OuYang Z C. Recent theoretical advances in elasticity of membranes following helfrich’s spontaneous curvature model. Adv Colloid Interf, 2014, 208: 66-75
[126]  102 Fedosov D A, Caswell B, Suresh S, et al. Quantifying the biophysical characteristics of plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci USA, 2011, 108: 35-39
[127]  103 Yazdani A Z K, Bagchi P. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys Rev E, 2011, 84: 026314
[128]  104 Kantsler V, Steinberg V. Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys Rev Lett, 2006, 96: 036001
[129]  105 Kantsler V, Steinberg V. Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys Rev Lett, 2005, 95: 258101
[130]  106 Keller S R, Skalak R. Motion of a tank-treading ellipsoidal particle in a shear flow. J Fluid Mech, 1982, 120: 27-47
[131]  107 Misbah C. Vacillating breathing and tumbling of vesicles under shear flow. Phys Rev Lett, 2006, 96: 028104
[132]  108 Lebedev V V, Turitsyn K S, Vergeles S S. Dynamics of nearly spherical vesicles in an external flow. Phys Rev Lett, 2007, 99: 218101
[133]  109 Skotheim J M, Secomb T W. Red blood cells and other nonspherical capsules in shear flow: Oscillatory dynamics and the tank-treading-to-tumbling transition. Phys Rev Lett, 2007, 98: 078301
[134]  110 Turitsyn K S, Vergeles S S. Wrinkling of vesicles during transient dynamics in elongational flow. Phys Rev Lett, 2008, 100: 028103
[135]  111 Kaoui B, Farutin A, Misbah C. Vesicles under simple shear flow: Elucidating the role of relevant control parameters. Phys Rev E, 2009, 80: 061905
[136]  112 Farutin A, Biben T, Misbah C. Analytical progress in the theory of vesicles under linear flow. Phys Rev E, 2010, 81: 061904
[137]  113 Noguchi H. Dynamic modes of microcapsules in steady shear flow: Effects of bending and shear elasticities. Phys Rev E, 2010, 81: 056319
[138]  114 Vlahovska P M, Young Y N, Danker G, et al. Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J Fluid Mech, 2011, 678: 221-247
[139]  115 Farutin A, Aouane O, Misbah C. Vesicle dynamics under weak flows: Application to large excess area. Phys Rev E, 2012, 85: 061922
[140]  116 Guedda M, Abaidi M, Benlahsen M, et al. Dynamic modes of quasispherical vesicles: Exact analytical solutions. Phys Rev E, 2012, 86: 051915
[141]  117 Noguchi H, Gompper G. Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations. Phys Rev E, 2005, 72: 011901
[142]  118 Bagchi P, Kalluri R M. Dynamics of nonspherical capsules in shear flow. Phys Rev E, 2009, 80: 016307
[143]  119 Biben T, Farutin A, Misbah C. Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram. Phys Rev E, 2011, 83: 031921
[144]  120 Dodson W R, Dimitrakopoulos P. Oscillatory tank-treading motion of erythrocytes in shear flows. Phys Rev E, 2011, 84: 011913
[145]  121 Walter J, Salsac A V, Barthes-Biesel D. Ellipsoidal capsules in simple shear flow: Prolate versus oblate initial shapes. J Fluid Mech, 2011, 676: 318-347
[146]  122 Yazdani A Z K, Kalluri R M, Bagchi P. Tank-treading and tumbling frequencies of capsules and red blood cells. Phys Rev E, 2011, 83: 046305
[147]  123 Dodson W R, Dimitrakopoulos P. Tank-treading of swollen erythrocytes in shear flows. Phys Rev E, 2012, 85: 021922
[148]  124 Farutin A, Misbah C. Squaring, parity breaking, and s tumbling of vesicles under shear flow. Phys Rev Lett, 2012, 109: 248106
[149]  125 Yazdani A, Bagchi P. Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method. Phys Rev E, 2012, 85: 056308
[150]  126 Cordasco D, Bagchi P. Orbital drift of capsules and red blood cells in shear flow. Phys Fluids, 2013, 25: 091902
[151]  127 Dupont C, Salsac A V, Barthes-Biesel D. Off-plane motion of a prolate capsule in shear flow. J Fluid Mech, 2013, 721: 180-198
[152]  128 Wang Z, Sui Y, Spelt P D M, et al. Three-dimensional dynamics of oblate and prolate capsules in shear flow. Phys Rev E, 2013, 88: 053021
[153]  129 Yazdani A, Bagchi P. Influence of membrane viscosity on capsule dynamics in shear flow. J Fluid Mech, 2013, 718: 569-595
[154]  130 Peng Z, Mashayekh A, Zhu Q. Erythrocyte responses in low-shear-rate flows: Effects of non-biconcave stress-free state in the cytoskeleton. J Fluid Mech, 2014, 742: 96-118
[155]  131 Abkarian M, Faivre M, Viallat A. Swinging of red blood cells under shear flow. Phys Rev Lett, 2007, 98: 188302
[156]  132 Deschamps J, Kantsler V, Segre E, et al. Dynamics of a vesicle in general flow. Proc Natl Acad Sci USA, 2009, 106: 11444-11447
[157]  133 Deschamps J, Kantsler V, Steinberg V. Phase diagram of single vesicle dynamical states in shear flow. Phys Rev Lett, 2009, 102: 118105
[158]  134 Dupire J, Socol M, Viallat A. Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci USA, 2012, 109: 20808-20813
[159]  135 Koleva I, Rehage H. Deformation and orientation dynamics of polysiloxane microcapsules in linear shear flow. Soft Matter, 2012, 8: 3681-3693
[160]  136 Zabusky N J, Segre E, Deschamps J, et al. Dynamics of vesicles in shear and rotational flows: Modal dynamics and phase diagram. Phys Fluids, 2011, 23: 041905
[161]  137 Levant M, Steinberg V. Amplification of thermal noise by vesicle dynamics. Phys Rev Lett, 2012, 109: 268103
[162]  138 Schmid-schonbein H, Wells R. Fluid drop-like transition of erythrocytes under shear. Science, 1969, 165: 288-291
[163]  139 Fischer T M, Stohrliesen M, Schmid-schonbein H. The red cell as a fluid droplet tank tread-like motion of the human erythrocyte membrane in shear flow. Science, 1978, 202: 894-896
[164]  140 Sui Y, Chew Y T, Roy P, et al. Dynamic motion of red blood cells in simple shear flow. Phys Fluids, 2008, 20: 112106
[165]  141 Noguchi H. Swinging and synchronized rotations of red blood cells in simple shear flow. Phys Rev E, 2009, 80: 021902
[166]  142 Omori T, Ishikawa T, Barthes-Biesel D, et al. Tension of red blood cell membrane in simple shear flow. Phys Rev E, 2012, 86: 056321
[167]  143 Peng Z L, Li X J, Pivkin I V, et al. Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc Natl Acad Sci USA, 2013, 110: 13356-13361
[168]  144 Peng Z L, Zhu Q. Deformation of the erythrocyte cytoskeleton in tank treading motions. Soft Matter, 2013, 9: 7617-7627
[169]  145 Forsyth A M, Wan J, Owrutsky P D, et al. Multiscale approach to link red blood cell dynamics, shear viscosity, and atp release. Proc Natl Acad Sci USA, 2011, 108: 10986-10991
[170]  146 Gong Z, Huang H, Lu C. Stability analysis of the immersed boundary method for a two-dimensional membrane with bending rigidity. Commun. Comput Phys, 2008, 3: 704-723
[171]  147 Gong Z X, Lu C J, Huang H X. Modeling two-dimensional cell deformation in shear flow (in Chinese). Chin J Appl Mech, 2008, 25: 547-550 [宫兆新, 鲁传敬, 黄华雄. 二维细胞在剪切流动中的运动特性. 应用力学学报, 2008, 25: 547-
[172]  148 Gong Z X, Lu C J. Effect of elastic constitutive laws on the deformation of two-dimensional red blood cell. J Shanghai Jiaotong Univ, 2009, 14: 76-80
[173]  149 Gong Z X, Lu C J. Research on the spherical capsule motion in 3d simple shear flows. J Shanghai Jiaotong Univ, 2010, 15: 702-706
[174]  150 Chen S, Zhao J, Fan X J, et al. Research advances in the study of complex fluid flows by dissipative particle dynamics (in Chinese). Bull Sci Tech, 2006, 22: 596-602 [陈硕, 赵钧, 范西俊, 等. 复杂流体流动的耗散粒子动力学研究进展. 科技通报, 2006, 22: 596-
[175]  151 Kaoui B, Harting J, Misbah C. Two-dimensional vesicle dynamics under shear flow: Effect of confinement. Phys Rev E, 2011, 83: 066319
[176]  152 Veerapaneni S K, Young Y N, Vlahovska P M, et al. Dynamics of a compound vesicle in shear flow. Phys Rev Lett, 2011, 106: 158103
[177]  153 Kaoui B, Kruger T, Harting J. How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter, 2012, 8: 9246-9252
[178]  154 Laadhari A, Saramito P, Misbah C. Vesicle tumbling inhibited by inertia. Phys Fluids, 2012, 24: 031901
[179]  155 Salac D, Miksis M J. Reynolds number effects on lipid vesicles. J Fluid Mech, 2012, 711: 122-146
[180]  156 Abreu D, Seifert U. Noisy nonlinear dynamics of vesicles in flow. Phys Rev Lett, 2013, 110: 238103
[181]  157 Dodson W R, Dimitrakopoulos P. Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes. J Fluid Mech, 2009, 641: 263-296
[182]  158 Zhao H, Spann A P, Shaqfeh E S G. The dynamics of a vesicle in a wall-bound shear flow. Phys Fluids, 2011, 23: 121901
[183]  159 Zhao M Y, Bagchi P. Dynamics of microcapsules in oscillating shear flow. Phys Fluids, 2011, 23: 111901
[184]  160 Tong G, Hu H H, Castaneda P P. Dynamics and rheology of elastic particles in an extensional flow. J Fluid Mech, 2013, 715: 573-596
[185]  161 Singh R K, Li X, Sarkar K. Lateral migration of a capsule in plane shear near a wall. J Fluid Mech, 2014, 739: 421-443
[186]  162 Kaoui B, Kruger T, Harting J. Complex dynamics of a bilamellar vesicle as a simple model for leukocytes. Soft Matter, 2013, 9: 8057-8061
[187]  163 Noguchi H. Dynamic modes of red blood cells in oscillatory shear flow. Phys Rev E, 2010, 81: 061920
[188]  164 Noguchi H. Dynamics of fluid vesicles in oscillatory shear flow. J Phys Soc Jpn, 2010, 79: 024801
[189]  165 Dupire J, Abkarian M, Viallat A. Chaotic dynamics of red blood cells in a sinusoidal flow. Phys Rev Lett, 2010, 104: 208102
[190]  166 Levant M, Steinberg V. Complex dynamics of compound vesicles in linear flow. Phys Rev Lett, 2014, 112: 138106
[191]  167 Snoeijer J H, Andreotti B. Moving contact lines: Scales, regimes, and dynamical transitions. Annu Rev Fluid Mech, 2013, 45: 269-292
[192]  168 Sui Y, Ding H, Spelt P D M. Numerical simulations of flows with moving contact lines. Annu Rev Fluid Mech, 2014, 46: 97-119
[193]  169 Seifert U, Lipowsky R. Adhesion of vesicles. Phys Rev A, 1990, 42: 4768-4771
[194]  170 Cantat I, Kassner K, Misbah C. Vesicles in haptotaxis with hydrodynamical dissipation. Eur Phys J E, 2003, 10: 175-189
[195]  171 Smith A S, Seifert U. Vesicles as a model for controlled (de-) adhesion of cells: A thermodynamic approach. Soft Matter, 2007, 3: 275-289
[196]  172 Das S, Du Q. Adhesion of vesicles to curved substrates. Phys Rev E, 2008, 77: 011907
[197]  173 Blount M J, Miksis M J, Davis S H. The equilibria of vesicles adhered to substrates by short-ranged potentials. P Roy Soc A-Math Phys, 2013, 469
[198]  174 Braun D, Fromherz P. Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Phys Rev Lett, 1998, 81: 5241-5244
[199]  175 Kloboucek A, Behrisch A, Faix J, et al. Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study. Biophys J, 1999, 77: 2311-2328
[200]  176 Bell G I. Models for the specific adhesion of cells to cells. Science, 1978, 200: 618-627
[201]  177 Dembo M, Torney D C, Saxman K, et al. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond Ser B-Biol Sci, 1988, 234: 55-83
[202]  178 Alon R, Hammer D A, Springer T A. Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature, 1995, 374: 539-542
[203]  179 Lasky L A. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Ann Rev Biochem, 1995, 64: 113-139
[204]  180 McEver R P, Zhu C. Rolling cell adhesion. Annu Rev Cell Dev Biol, 2010, 26: 363-396
[205]  181 Fenz S F, Bihr T, Merkel R, et al. Switching from ultraweak to strong adhesion. Adv Mater, 2011, 23: 2622-2626
[206]  182 Cantat I, Misbah C. Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys Rev Lett, 1999, 83: 880-883
[207]  183 Seifert U. Hydrodynamic lift on bound vesicles. Phys Rev Lett, 1999, 83: 876-879
[208]  184 Abkarian M, Lartigue C, Viallat A. Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force. Phys Rev Lett, 2002, 88: 068103
[209]  185 Abkarian M, Viallat A. Dynamics of vesicles in a wall-bounded shear flow. Biophys J, 2005, 89: 1055-1066
[210]  186 Chang K C, Tees D F J, Hammer D A. The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion. Proc Natl Acad Sci USA, 2000, 97: 11262-11267
[211]  187 King M R, Hammer D A. Multiparticle adhesive dynamics: Hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad Sci USA, 2001, 98: 14919-14924
[212]  188 Caputo K E, Hammer D A. Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations. Biophys J, 2005, 89: 187-200
[213]  200 Luo Z Y, He L, Wang S Q, et al. Two-dimensional numerical study of flow dynamics of a nucleated cell tethered under shear flow. Chem Eng Sci, 2014, 119: 236-244Fedosov D A, Caswell B, Karniadakis G E. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J, 2011, 100: 2084-2093
[214]  175 Kloboucek A, Behrisch A, Faix J, et al. Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study. Biophys J, 1999, 77: 2311-2328
[215]  176 Bell G I. Models for the specific adhesion of cells to cells. Science, 1978, 200: 618-627
[216]  177 Dembo M, Torney D C, Saxman K, et al. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond Ser B-Biol Sci, 1988, 234: 55-83
[217]  178 Alon R, Hammer D A, Springer T A. Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature, 1995, 374: 539-542
[218]  192 N'Dri N A, Shyy W, Tran-Soy-Tay R. Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J, 2003, 85: 2273-2286
[219]  193 Khismatullin D B, Truskey G A. A 3d numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvasc Res, 2004, 68: 188-202
[220]  194 Jadhav S, Eggleton C D, Konstantopoulos K. A 3-d computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys J, 2005, 88: 96-104
[221]  195 Khismatullin D B, Truskey G A. Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity. Phys Fluids, 2005, 17: 031505
[222]  196 Pappu V, Bagchi P. 3d computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput Biol Med, 2008, 38: 738-753
[223]  197 Pappu V, Doddi S K, Bagchi P. A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J Theor Biol, 2008, 254: 483-498
[224]  198 Luo Z Y, Xu F, Lu T J, et al. Direct numerical simulation of detachment of single captured leukocyte under different flow conditions. J Mech Med Biol, 2011, 11: 273-284
[225]  199 Luo Z Y, Wang S Q, He L, et al. Front tracking simulation of cell detachment dynamic mechanism in microfluidics. Chem Eng Sci, 2013, 97: 394-405
[226]  200 Luo Z Y, He L, Wang S Q, et al. Two-dimensional numerical study of flow dynamics of a nucleated cell tethered under shear flow. Chem Eng Sci, 2014, 119: 236-244
[227]  201 Fedosov D A, Caswell B, Karniadakis G E. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J, 2011, 100: 2084-2093

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133