全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

哈勃参量观测数据及其他数据对相互作用暗能量的观测限制

DOI: 10.1360/N972015-00827, PP. 3337-3344

Keywords: 相互作用暗能量,宇宙学观测,哈勃参数,Ia型超新星

Full-Text   Cite this paper   Add to My Lib

Abstract:

主要基于哈勃参量观测数据(OHD)、普朗克卫星的微波背景辐射数据(CMB)、重子声学振荡数据(BAO)和Ia型超新星数据(SNe)来限制宇宙学相互作用暗能量模型.利用马尔可夫链蒙特卡洛(MCMC)算法和CosmoMC程序,用X2的方法实现模型中参数的数值拟合.OHD+SNe+CMB+BAO数据组合得到各参数的最佳拟合值及2σ误差范围分别为物质密度参数Ωm=0.2919-0.0075+0.0075(1σ)-0.0144+0.0151(2σ),暗能量状态方程参数wX=-1.0374-0.0452+0.0453(1σ)-0.0886+0.0898(2σ),哈勃常数H0=69.6479-0.8563+0.8580(1σ)-1.6768+1.6919(2σ),相互作用因子ξ=3.0976-0.1609+0.1600(1σ)-0.3189+0.3153(2σ),wX,ξ的最佳拟合值满足ξ+3wXOHD对相互作用参数的限制效果,本文采用OHD,SNe和CMB+BAO数据组合对该模型进行了限制对比,得到结论如下(1)当联合SNe,CMB+BAO,OHD能更紧密地限制相互作用暗能量模型,并且OHD具有缓解巧合性问题的潜力;(2)对于模型中表示暗物质和暗能量无相互作用的情形均包括在OHD+CMB+BAO,SNe+CMB+BAO,和OHD+SNe+CMB+BAO三组数据限制结果的1σ范围.

References

[1]  1 Riess A G, Filippenko A V, Challis P, et al. Observational evidence from supernovae for an acceler-ating universe and a cosmological constant. Astron J, 1998, 116: 1009
[2]  2 Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astron J, 1999, 517: 565
[3]  3 Spergel D N, Verde L, Peiris H V, et al. First-year Wilkinson Microwave Anisotropy Probe(WMAP) *Observations: Determination of cosmological parameters. Astronphys J Suppl, 2003, 148: 175
[4]  4 Tegmark M, Blanton M R, Strauss M A, et al. The three-dimensional power spectrum of galaxies from the sloan digital sky survey. Astronphs J, 2004, 606: 702
[5]  5 Caldwell R R, Dave R, Steinhardt P J. Cosmological imprint of an energy component with general equ-ation of state. Phys Rev Lett, 1998, 80: 1582
[6]  6 Liddle A R, Scherrer R J. Classification of scalar field potentials with cosmological scaling solutions. Phys Rev D, 1998, 59: 023509
[7]  7 Caldwell R R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys Lett B, 2002, 545: 23-29
[8]  8 Carroll S M, Hoffman M, Trodden M. Can the dark energy equation-of-state parameter ω be less than -1. Phys Rev D, 2003, 68: 023509
[9]  9 Feng B, Wang X, Zhang X. Dark energy constraints from the cosmic age and supernova. Phys Lett B, 2005, 607: 35
[10]  10 Guo Z K, Piao Y S, Zhang X, et al. Cosmological evolution of a quintom model of dark energy. Phys Lett B, 2005, 608: 177-182
[11]  11 Maor I, Brustein R, Steinhardt P J. Limitations in using luminosity distance to determine the equation of state of the universe. Phys Rev Lett, 2001, 86: 6-9
[12]  12 Ma C, Zhang T J. Power of observational Hubble parameter data: A figure of merit exploration. Astrophys J, 2011, 730: 74
[13]  13 Lin H, Hao C, Wang X, et al. Observational H (z) data as a complementarity to other cosmological probes. Mod Phys Lett A, 2009, 24: 1699-1709
[14]  14 Yuan S, Chen Z, Zhang T J. Cosmological constraints on ΛCDM from observational Hubble data: Markov Chain Monte Carlo approach. J B Norm Univ (Nat Sci), 2012, 48: 372-377 [袁硕, 陈震, 张同杰. 利用哈勃参量观测数据限制ΛCDM宇宙学模型: MCMC方法. 北京师范大学学报(自然科学版), 2012, 48: 372-
[15]  15 Cao S, Liang N, Zhu Z H. Testing the phenomenological interacting dark energy with observational H(z) data. Mon Not R Astron Soc, 2011, 416: 1099-1104
[16]  16 Meng X L, Wang X, Zhang T J, et al. Utility of observational Hubble parameter data on dark Energy evolution. 2015, arXiv: 1507.02517
[17]  17 Amendola L, Tsujikawa S. Dark Energy Theory and Observations. Cambridge: Cambridge University Press, 2010
[18]  18 Dalal N, Abazajian K, Jenkins E, et al. Testing the cosmic coincidence problem and the nature of dark energy. Phys Rev Lett, 2001, 87: 141302
[19]  19 Pavon D, Sen S, Zimdahl W. Cosmic microwave background constraints on interacting cosmological models. J Cosmol Astropart P, 2004, (5): 009
[20]  20 Guo Z K, Ohta N, Tsujikawa S. Probing the coupling between dark components of the universe. Phys Rev D, 2007, 76: 023508
[21]  21 Wei H, Zhang S N. Interacting energy components and observational H (z) data. Phys Lett B, 2007, 654: 139-147
[22]  22 Zhang T J, Ma Z, Zhang Z, et al. The constraint on dark side of the universe (3D space)—The Hubble parameter cosmology (in Chinese). Sci Sin Phys Mech Astron, 2011, 41: 1452-1468 [张同杰, 马骢, 张聪, 等. 宇宙黑暗面(3D宇宙)的限制和哈勃参量的观测数据——哈勃参量宇宙学. 中国科学: 物理学 力学 天文学, 2011, 41: 1452-
[23]  23 Jimenez R, Verde L, Treu T, et al. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB. Astrophys J, 2003, 593: 622-629
[24]  24 Simon J, Verde L, Jimenez R. Constraints on the redshift dependence of the dark energy potential. Phys Rev D, 2005, 71: 23001
[25]  25 Stern D, Jimenez R, Verde L, et al. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J Cosmol Astropart Phys, 2010, (2): 8
[26]  26 Moresco M, Cimatti A, Jimenez R, et al. Improved constraints on the expansion rate of the Unive-se up to z~1.1 from the spectroscopic evolution of cosmic chronometers. J Cosmol Astropart Phys, 2012, (8): 006
[27]  27 Bruzual G, Charlot S. Stellar population synthesis at the resolution of 2003. Mon Not R Astron Soc, 2003, 344: 1000-1028
[28]  28 Maraston C, Str G. Stellar population models at high spectral resolution. Mon Not R Astron Soc, 2011, 418: 2785-2811
[29]  29 Chuang C H, Wang Y. Measurements of H(z) and DA(z) from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies. Mon Not R Astron Soc, 2012, 426: 226-236
[30]  30 Zhang C, Zhang H, Yuan S, et al. Four new observational H(z) data from luminous red galaxies sloan digital sky survey data release seven. Res Astron Astrophys, 2014, (10): 1221-1233
[31]  31 Moresco M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometersat z~2. Mon Not R Astron Soc: Lett, 2015, 450: L16-L20
[32]  32 Gaztanaga E, Cabre A, Hui L. Clustering of luminous red galaxies. IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon Not R Astron Soc, 2009, 399: 1663-1680
[33]  33 Blake C, Brough S, Colless M, et al. The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z<1. Mon Not R Astron Soc, 2012, 425: 405-414
[34]  34 Samushia L, Reid B A, White M, et al. The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: Testing deviations from Λ and general relativity using anisotropic clustering of galaxies. Mon Not R Astron Soc, 2013, 429: 1514-1528
[35]  35 Xu X, Cuesta A J, Padmanabhan N, et al. Measuring DA and H at z=0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations. Mon Not R Astrono Soc, 2013, 431: 2834-2860
[36]  36 Busca N G, Delubac T, Rich J, et al. Baryon acoustic oscillations in the Lyalpha forest of BOSS quasars. Astron Astrophys, 2013, 552: A96
[37]  37 Font-Ribera A, Kirkby D, Miralda-Escudé J, et al. Quasar-Lyman a forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations. J Cosmol Astropart Phys, 2014, 2014: 027
[38]  38 Delubac T, Bautista J E, Rich J, et al. Baryon Acoustic Oscillations in the Ly a forest of BOSS DR11 quasars. Astron Astrophys, 2015, 574: A59
[39]  39 Crocce M, Gaztanaga E, Cabre A, et al. Clustering of photometric luminous red galaxies I : Growth of structure and baryon acoustic feature. Mon Not R Astron Soc, 2011, 417: 2577-2591
[40]  40 Carnero A, Sanchez E, Crocce M, et al. Clustering of photometric luminous red galaxies II: Cosmological implications from the baryon acoustic scale. Mon Not R Astron Soc, 2012, 419: 1689-1694
[41]  41 Sánchez E, Carnero A, García-Bellido J, et al. Tracing the sound horizon scale with photometric redshift surveys. Mon Not R Astron Soc, 2011, 411: 277-288
[42]  42 Percival W J, Reid B A, Eisenstein D J, et al. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon Not R Astron Soc, 2010, 401: 2148
[43]  43 Reid B A. Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon Not R Astron Soc, 2010, 404: 60
[44]  44 Beutler F, Blake C, Colless M, et al. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon Not R Astron Soc, 2011, 416: 3017-3032
[45]  45 Blake C, Kazin E A, Beutler F, et al. The WiggleZ Dark Energy Survey: Mapping the distance-redshift relation with baryon acoustic oscillations. Mon Not R Astron Soc, 2011, 418: 1707-1724
[46]  46 Ade P A R, Armitage-Caplan C, Arnaud M, et al. Planck 2013 results. XVI. Cosmological parameters. Astron Astrophys, 2014, 571: A16
[47]  47 Wang Y, Wang S. Distance priors from planck darkenergy constraints from current data. Phy Rev D, 2013, 88: 043522
[48]  48 Suzuki N, Rubin D, Lidman C, et al. The Hubble Space Telescope Cluster Supernova Survey. V. Improving the dark-energy constraints above z>1 and building an early-type-hosted supernova sample. Astrophys J, 2012, 746: 85
[49]  49 Guy J, Astier P, Nobili S, et al. SALT: A spectral adaptive light curve template for type Ia supernovae. Astron Astrophys, 2005, 443: 781-791
[50]  50 Di Pietro E, Claeskens J F. Future supernovae data and quintessence models. Mon Not R Astron Soc, 2003, 341: 1299-1310
[51]  51 Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte-Carlo approach. Phys Rev D, 2002, 66: 103511

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133