全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

度规的量子涨落对宇宙演化的影响

DOI: 10.1360/N972015-00877, PP. 3332-3336

Keywords: 修改引力,量子涨落,海森伯非微扰量子化,暴胀,暗能量

Full-Text   Cite this paper   Add to My Lib

Abstract:

修改引力最一般的方法,是考虑用里奇标量的一般函数代替爱因斯坦-海森伯作用量,也即?(R)理论.本文即根据海森伯的度规非微扰量子化方法,提出了一种新的修改引力理论,即把度规算符分解为经典部分和量子涨落部分,得到修改引力的场方程和守恒方程.应用到Friedmann-Lemaitre-Robertson-Walker时空,得到修改的弗雷德曼方程.由于度规的量子涨落,在一定条件下,可以实现反弹宇宙;或者在暗能量主导的时期,宇宙的膨胀速度也可能减慢,并根据物理条件,对相关参数进行了必要的限制.我们不仅分析了度规的量子涨落对辐射和尘埃演化时期的影响,而且还给出了量子涨落对暴涨参数——如慢滚参数、光谱指数和原初曲率扰动谱的修正.

References

[1]  9 Yang R. New types of ?(T) gravity. Eur Phys J C, 2011, 71: 1797
[2]  10 Dzhunushaliev V, Folomeev V, Kleihaus B, et al. Modified gravity from the quantum part of the metric. Eur Phys J C, 2014, 74: 2743
[3]  11 Dzhunushaliev V, Folomeev V, Kleihaus B, et al. Modified gravity from the nonperturbative quantization of a metric. Eur Phys J C, 2015, 75: 157
[4]  12 Dzhunushaliev V. Nonperturbative quantization: Ideas, perspectives, and applications. 2015, arXiv: 1505.02747
[5]  13 Dzhunushaliev V, Folomeev V, Kleihaus B, et al. Quantum torsion with non-zero standard deviation: Non-perturbative approach for cosmology. Phys Lett B, 2013, 719: 5-8
[6]  14 Harko T, Lobo F S, Nojiri S, et al. ?(R,T) gravity. Phys Rev D, 2011, 84: 024020
[7]  15 Bertolami O, Lobo F S, Paramos J. Non-minimum coupling of perfect fluids to curvature. Phys Rev D, 2008, 78: 064036
[8]  16 Harko T. Modified gravity with arbitrary coupling between matter and geometry. Phys Lett B, 2008, 669: 376-379
[9]  17 Bisabr Y. Modified gravity with a non-minimal gravitational coupling to matter. Phys Rev D, 2012, 86: 044025
[10]  18 Minazzoli O. Conservation laws in theories with universal gravity/matter coupling. Phys Rev D, 2013, 88: 027506
[11]  19 Schutz B F. Perfect fluids in general relativity: Velocity potentials and a variational principle. Phys Rev D, 1970, 2: 2762
[12]  20 Brown J D. Action functionals for relativistic perfect fluids. Classical Quantum Gravity, 1993, 10: 1579-1606
[13]  21 Sotiriou T P, Faraoni V. Modified gravity with R-matter couplings and (non-)geodesic motion. Classical Quantum Gravity, 2008, 25: 205002
[14]  22 Faraoni V. The Lagrangian description of perfect fluids and modified gravity with an extra force. Phys Rev D, 2009, 80: 124040
[15]  23 Bertolami O, Bohmer C G, Harko T, et al. Extra force in ?(R) modified theories of gravity. Phys Rev D, 2007, 75: 104016
[16]  24 Bertolami O, Frazao P, Paramos J. Accelerated expansion from a non-minimal gravitational coupling to matter. Phys Rev D, 2010, 81: 104046
[17]  25 Bertolami O, Martins A. On the dynamics of perfect fluids in non-minimally coupled gravity. Phys Rev D, 2012, 85: 024012
[18]  26 Bertolami O, Frazao P, Paramos J. Reheating via a generalized non-minimal coupling of curvature to matter. Phys Rev D, 2011, 83: 044010
[19]  1 Carroll S M. The Cosmological constant. Living Rev Rel, 2001, 4: 1
[20]  2 Yang R J, Zhang S N. The age problem in ΛCDM model. Mon Not Roy Astron Soc, 2010, 407: 1835-1841
[21]  3 Capozziello S, Laurentis M De. Extended theories of gravity. Phys Rept, 2011, 509: 167-321
[22]  4 Sotiriou T P, Faraoni V. ?(R) theories of gravity. Rev Mod Phys, 2010, 82: 451-497
[23]  5 Silvestri A, Trodden M. Approaches to understanding cosmic acceleration. Rept Prog Phys, 2009, 72: 096901
[24]  6 Nojiri S, Odintsov S D. Unified cosmic history in modified gravity: From ?(R) theory to Lorentz non-invariant models. Phys Rept, 2011, 505: 59-144
[25]  7 Felice A De, Tsujikawa S. ?(R) theories. Living Rev Rel, 2010, 13: 3
[26]  8 Bengochea G R, Ferraro R. Dark torsion as the cosmic speed-up. Phys Rev D, 2009, 79: 124019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133