OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
具有庞加莱子群形变群对称性时空中的场论构造
DOI: 10.1360/N972015-01011, PP. 3322-3331
Keywords: 非常狭义相对论,形变群,Finsler几何,Minkowski流形,形变修正
Abstract:
当今物理实验对局域Lorentz和CPT对称性的破缺程度给出了严格的限制,但同时有诸多细微现象都似乎表示这两者可能是破缺的.找到这种可能的破缺并给出匹配的合理的物理图景,将是一件很有意义的事情.由于对所有洛伦兹子群与时空平移群的半直积群进行形变所可能得到的形变群其相应的时空几何实现基本都是Finsler类型的,在本文中研究了这些时空几何中的质点动力学,得到了其色散关系,并据此研究了这些Finsler时空所容许的场论模型,讨论了标量场、旋量场、矢量场和规范耦合的动力学和相对闵氏时空中场论由形变引起的修正.本文选择研究的Finsler结构,具有明显的时空方向依赖性的.因而,如果时空是Finsler的,那么可以通过某些精心设计的实验观测到这种方向依赖性.
References
[1] | 5 Mo X H. An introduction to finsler geometry. World Sci, 2006
|
[2] | 6 Zhang L, Xue X. The deformation of poincar\'e subgroups concerning very special relativity. Sci China Phys Mech Astron, 2014, 57: 859-874
|
[3] | 7 Zhang L, Xue X. The finsler type of space-time realization of deformed very special relativity. arXiv: 1205.11346
|
[4] | 8 Coleman S R, Glashow S L. Cosmic ray and neutrino tests of special relativity. Phys Lett B, 1997, 405: 249
|
[5] | 1 Coleman S R, Glashow S L. High-energy tests of lorentz invariance. Phys Rev D, 1999, 59: 116008
|
[6] | 2 Colladay D, Kostelecky V A. Lorentz-violating extension of the standard model. Phys Rev D, 1998, 58: 116002
|
[7] | 3 Cohen A G, Glashow S L. Very special relativity. Phys Rev Lett, 2006, 97: 021601
|
[8] | 4 Gibbons G W, Gomis J, Pope C N. General very special relativity is Finsler geometry. Phys Rev D, 2007, 76: 081701(R)
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|