全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

基于圈量子引力的孤立视界熵的统计解释新方案

DOI: 10.1360/N972015-00906, PP. 3313-3321

Keywords: 圈量子引力,孤立视界,边界BF理论,,统计解释

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了在圈量子引力框架下应用边界BF理论对孤立视界熵做出统计解释的新方案.相比于以前的边界Chern-Simons理论方案,边界BF理论方案的最主要优点是,它适用于任意维度时空中的孤立视界.边界BF理论方案的可应用性非常广,包括任意维度时空中的Einstein理论、标量张量引力理论、以及引力与标量场非最小耦合理论.对于含有高阶导数项的Lovelock理论,在做了一定的假设以后,同样可以得到视界的熵.新方案既可解释Bekenstein-Hawking面积熵,也可解释Wald熵.文中提供了两种相关但又不同的具体实现方法.

References

[1]  30 Huang C G, Liu L, Zhao Z. The thermodynamical approach to the back-reaction problem. Gen Rel Grav, 1993, 25: 1267-1275
[2]  31 Antoniadis I, Arkani-Hamed N, Dimopoulos S, et al. New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys Lett B, 1998, 436: 257-263
[3]  32 Randall L, Sundrum R. An alternative to compactification. Phys Rev Lett, 1999, 83: 4690-4693
[4]  33 Bodendorfer N, Thiemann T, Thurn A. New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class Quant Grav, 2013, 30: 045001
[5]  34 Bodendorfer N, Thiemann T, Thurn A. New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class Quant Grav, 2013, 30: 045002
[6]  35 Bodendorfer N, Thiemann T, Thurn A. New variables for classical and quantum gravity in all dimensions III. Quantum theory. Class Quant Grav, 2013, 30: 045003
[7]  36 Bodendorfer N, Thiemann T, Thurn A. New variables for classical and quantum gravity in all dimensions IV. Matter coupling. Class Quant Grav, 2013, 30: 045004
[8]  37 Bodendorfer N, Thiemann T, Thurn A. New variables for classical and quantum gravity in all dimensions V. Isolated horizon boundary degrees of freedom. Class Quant Grav, 2014, 31: 055002
[9]  38 Lovelock D. The Einstein tensor and its generalizations. J Math Phys, 1971, 12: 498-501
[10]  39 Camanho X O, Edelstein J D. A Lovelock black hole bestiary. Class Quant Grav, 2013, 30: 035009
[11]  40 Wald R M. Black hole entropy is the Noether charge. Phys Rev D, 1993, 48: 3427-3431
[12]  41 Iyer V, Wald R M. Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys Rev D, 1994, 50: 846-864
[13]  42 Bodendorfer N, Neiman Y. The Wald entropy formula and loop quantum gravity. Phys Rev D, 2014, 90: 084054
[14]  43 Jacobson T, Myers R C. Black hole entropy and higher curvature interactions. Phys Rev Lett, 1993, 70: 3684-3687
[15]  44 Ashtekar A, Corichi A. Nonminimal couplings, quantum geometry and black hole entropy. Class Quant Grav, 2003, 20: 4473-4484
[16]  45 Ashtekar A, Engle J, Broeck C V D. Quantum horizons and black hole entropy: Inclusion of distortion and rotation. Class Quant Grav, 2005, 22: L27-L34
[17]  46 Beetle C, Engle J. Generic isolated horizons in loop quantum gravity. Class Quant Grav, 2010, 27: 235024
[18]  47 Brans C, Dicke R H. Mach's principle and a relativistic theory of gravitation. Phys Rev, 1961, 124: 925-935
[19]  48 Bergmann P G. Comments on the scalar tensor theory. Int J Theor Phys, 1968, 1: 25-36
[20]  49 Zhang X D, Ma Y G. Nonperturbative loop quantization of scalar-tensor theories of gravity. Phys Rev D, 2011, 84: 104045
[21]  50 Zhang X D, Ma Y G. Loop quantum modified gravity and its cosmological application. Front Phys China, 2013, 8: 80-93
[22]  51 Ashtekar A, Corichi A, Sudarsky D. Nonminimally coupled scalar fields and isolated horizons. Class Quant Grav, 2003, 20: 3413-3426
[23]  52 Carlip S. Symmetries, horizons, and black hole entropy. Gen Rel Grav, 2007, 39: 1519-1523
[24]  53 Carlip S. Effective conformal descriptions of black hole entropy: A review. AIP Conf Proc, 2012, 1483: 54-62
[25]  1 Einstein A. On the General Theory of Relativity. Berlin: Sitzungsber Preuss Akad Wiss (Math Phys), 1915. 778-786, 844-847
[26]  2 Green M, Schwarz J, Witten E. Superstring Theory. Cambridge: Cambridge University Press, 1986
[27]  3 Polchinski J G. String Theory. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press, 2003
[28]  4 Becker K, Becker M, Schwarz J H. String Theory and M-Theory: A Modern Introduction. Cambridge: Cambridge University Press, 2007
[29]  5 Rovelli C. Quantum Gravity. In: Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press, 2004
[30]  6 Thiemann T. Modern Canonical Quantum General Relativity. In: Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press, 2008
[31]  7 Ashtekar A, Lewandowski J. Background independent quantum giravity: A status report. Class Quant Grav, 2004, 21: R53-R152
[32]  8 Bekenstein J D. Black holes and entropy. Phys Rev D, 1973, 7: 2333-2346
[33]  9 Hawking S W. Black-hole explosions. Nature, 1974, 248: 30-31
[34]  10 Strominger A, Vafa C. Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B, 1996, 379: 99-104
[35]  11 Smolin L. Linking topological quantum field theory and nonperturbative quantum gravity. J Math Phys, 1995, 36: 6417-6455
[36]  12 Krasnov K V. Counting surface states in the loop quantum gravity. Phys Rev D, 1997, 55: 3505-3513
[37]  13 Carlip S. Black hole thermodynamics and statistical mechanics. Lect Notes Phys, 2009, 769: 89-123
[38]  14 Ashtekar A, Krishnan B. Isolated and dynamical horizons and their applications. Living Rev Rel, 2004, 7: 10
[39]  15 Ashtekar A, Fairhurst S, Krishnan B. Isolated horizons: Hamiltonian evolution and the first law. Phys Rev D, 2000, 62: 104025
[40]  16 Ashtekar A, Beetle C, Fairhurst S. Isolated horizons: A generalization of black hole mechanics. Class Quant Grav, 1999, 16: L1-L7
[41]  17 Ashtekar A, Baez J C, Corichi A, et al. Quantum geometry and black hole entropy. Phys Rev Lett, 1998, 80: 904-907
[42]  18 Ashtekar A, Baez J C, Krasnov K. Quantum geometry of isolated horizons and black hole entropy. Adv Theor Math Phys, 2000, 4: 1-94
[43]  19 Wang J B, Ma Y G, Zhao X A. BF theory explanation of the entropy for non-rotating isolated horizons. Phys Rev D, 2014, 89: 084065
[44]  20 Huang C G, Wang J B. Reformulation of boundary BF Theory approach to statistical explanation of the entropy of isolated horizons. 2015, arXiv: 1506.02805
[45]  21 Horowitz G T. Exactly soluble diffeomorphism invariant theories. Commun Math Phys, 1989, 125: 417-437
[46]  22 Wang J B, Huang C G. The entropy of higher dimensional nonrotating isolated horizons from loop quantum gravity. Class Quant Grav, 2015, 32: 035026
[47]  23 Wang J B, Huang C G. BF theory explanation of the entropy for rotating isolated horizons. 2015, arXiv:1505.03647
[48]  24 Wang J B, Huang C G. The entropy of isolated horizons in non-minimally coupling scalar field theory from BF theory. 2015, arXiv: 1507.08807
[49]  25 Wang J B, Huang C G, Li L. The entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity. 2014, arXiv: 1411.0190
[50]  26 Wu X N, Ling Y, Tian Y, et al. Fluid/gravity correspondence for general non-rotating black holes. Class Quant Grav, 2013, 30: 145012
[51]  27 Krishnan B. Quasi-local Black Hole Horizons. In: Ashtekar A, Petkov V, eds. Spinger Handbook of Spacetime, Chapter 25. Berlin, Heidelberg: Springer-Verlag, 2014
[52]  28 Baez J C. An introduction to spin foam models of quantum gravity and BF theory. Lect Notes Phys, 2000, 543: 25-94
[53]  29 Huang C G, Liu L, Xu F. On black-hole thermodynamics and back-reaction. Chin Phys Lett, 1991, 8: 118-121

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133