全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

制冷空调系统性能优化的(火积)耗散热阻法研究进展

DOI: 10.1360/N972015-00127, PP. 3367-3376

Keywords: 制冷空调系统,优化,(火积),(火积)耗散热阻,换热器

Full-Text   Cite this paper   Add to My Lib

Abstract:

制冷空调系统是典型的能源利用系统,优化其性能有利于提高能源利用效率.本文总结了制冷空调系统性能全局优化的火积耗散热阻法的研究进展.首先介绍了火积的由来以及换热器耗散热阻概念,并以此为基础阐述了制冷空调系统中所涉及的换热器网络的等效热阻网络图的构建方法.通过分析等效热阻网络图,结合电路原理从物理上导出了系统中各变量间的整体约束方程.根据该约束方程和拉格朗日条件极值法,介绍了换热器网络的定量优化方法,实现了换热器网络性能的多目标优化.在此基础上,对于包含热功转换过程的制冷系统,通过对系统中换热器网络的(火积)耗散热阻分析以及热功转换过程的热力学分析,构建了系统中各变量间的整体约束方程,结合拉格朗日方程,实现了制冷系统的性能优化.

References

[1]  2 Ahn B C, Mitchell J W. Optimal control development for chilled water plants using a quadratic representation. Energy Build, 2001, 33: 371-378
[2]  3 Dotzauer E. Simple model for prediction of loads in district-heating systems. Appl Energy, 2002, 73: 277-284
[3]  4 Selbas R, Kizilkan O, Sencan A. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle. Energy, 2006, 31: 2108-2128
[4]  5 Khan J, Zubair S M. Thermodynamic optimization of finite time vapor compression refrigeration systems. Energy Convers Manag, 2001, 42: 1457-1475
[5]  6 Linnhoff B, Flower J R. Synthesis of heat-exchanger networks 1 systematic generation of energy optimal networks. AIChE J, 1978, 24: 633-642
[6]  1 McQuiston F C, Parker J D, Spitler J D. Heating, Ventilating, and Air Conditioning: Analysis and Design. 6th ed. Hoboken: John Wiley & Sons Inc, 2005
[7]  7 Linnhoff B, Hindmarsh E. The pinch design method for heat-exchanger networks. Chem Eng Sci, 1983, 38: 745-763
[8]  8 Ravagnani M, Silva A P, Arroyo P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm. Appl Therm Eng, 2005, 25: 1003-1017
[9]  9 Khorasany R M, Fesanghary M. A novel approach for synthesis of cost-optimal heat exchanger networks. Comput Chem Eng, 2009, 33: 1363-1370
[10]  10 Garcia R F. Improving heat exchanger supervision using neural networks and rule based techniques. Expert Syst Appl, 2012, 39: 3012-3021
[11]  11 Ning M, Zaheeruddin M. Neuro-optimal operation of a variable air volume HVAC&R system. Appl Therm Eng, 2010, 30: 385-399
[12]  12 Ma Z J, Wang S W. Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm. Appl Energy, 2011, 88: 198-211
[13]  13 Jin X Q, Du Z M, Xiao X. Energy evaluation of optimal control strategies for central VWV chiller systems. Appl Therm Eng, 2007, 27: 934-941
[14]  14 Sun J. Optimal supervisory control of a central chilled water plant with heuristic search sequential quadratic programming. Eng Optim, 2010, 42: 863-885
[15]  15 Fong K F, Yuen S Y, Chow C K, et al. Energy management and design of centralized air-conditioning systems through the non-revisiting strategy for heuristic optimization methods. Appl Energy, 2010, 87: 3494-3506
[16]  16 Baker D K, Sherif S A. Heat transfer optimization of a district heating system using search methods. Int J Energy Res, 1997, 21: 233-252
[17]  17 Wright J A, Loosemore H A, Farmani R. Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy Build, 2002, 34: 959-972
[18]  18 Cammarata G, Fichera A, Marletta L. Using genetic algorithms and the exergonomic approach to optimize district heating networks. ASME J Energy Res Technol, 1998, 120: 241-246
[19]  19 Bejan A. Theory of heat transfer-irreversible refrigeration plants. Int J Heat Mass Transf, 1989, 32: 1631-1639
[20]  20 Klein S A. Design considerations for refrigeration cycles. Int J Refrig, 1992, 15: 181-185
[21]  21 El-Din M M S. Optimization of totally irreversible refrigerators and heat pumps. Energy Convers Manag, 1999, 40: 423-436
[22]  22 Goktun S. Optimal performance of an irreversible, heat engine-driven, combined vapor compression and absorption refrigerator. Appl Energy, 1999, 62: 67-69
[23]  23 Khan J, Zubair S M. Thermodynamic optimization of finite time vapor compression refrigeration systems. Energy Convers Manag, 2001, 42: 1457-1475
[24]  24 Torres-Reyes E, De Gortari J C. Optimal performance of an irreversible solar assisted heat pump. Int J Exergy, 2001, 1: 107-111
[25]  25 Chen L G, Sun F R, Wu C. Optimal allocation of heat-exchanger area for refrigeration and air-conditioning plants. Appl Energy, 2004, 77: 339-354
[26]  26 Sarkar J, Bhattacharyya S. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs. Energy Convers Manag, 2007, 48: 803-808
[27]  27 Swider D J, Browne M W, Bansal P K, et al. Modelling of vapour compression liquid chillers with neural networks. Appl Therm Eng, 2001, 21: 311-329
[28]  28 West A C, Sherif S A. Optimization of multistage vapour compression systems using genetic algorithms, part 1: Vapour compression system model. Int J Energy Res, 2001, 25: 803-812
[29]  29 Richardson D H, Jiang H, Lindsay D, et al. Optimization of vapour compression systems via simulation. In: Proceedings of International Refrigeration and Air Conditioning Conference. West Lafayette, 2002
[30]  30 Gholap A K, Khan J A. Design and multi-objective optimization of heat exchangers for refrigerators. Appl Energy, 2007, 84: 1226-1239
[31]  31 Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transf, 2007, 50: 2545-2556
[32]  32 Chen Q, Xu Y C, Guo Z Y. The property diagram in heat transfer and its applications. Chin Sci Bull, 2012, 57: 4646-4652
[33]  33 Chen Q. Entransy dissipation-based thermal resistance method for heat exchanger performance design and optimization. Int J Heat Mass Transf, 2013, 60: 156-162
[34]  34 Chen Q, Fu R H, Xu Y C. Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks. Appl Energy, 2015, 139: 81-92
[35]  35 Xu Y C, Chen Q. Minimization of mass for heat exchanger networks in spacecrafts based on the entransy dissipation theory. Int J Heat Mass Transf, 2012, 55: 5148-5156
[36]  36 Chen Q, Xu Y C. An entransy dissipation-based optimization principle for building central chilled water systems. Energy, 2012, 37: 571-579
[37]  37 Chen Q, Wang Y F, Xu Y C. A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems. Appl Energy, 2015, 139: 119-130
[38]  38 Xu Y C, Chen Q. An entransy dissipation-based method for global optimization of district heating networks. Energy Build, 2012, 48: 50-60
[39]  39 Chen Q, Xu Y C, Hao J H. An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory. Appl Energy, 2014, 113: 982-989
[40]  40 Xu Y C, Chen Q. A theoretical global optimization method for vapor-compression refrigeration systems basedon entransy theory. Energy, 2013, 60: 464-473
[41]  41 Yener Y, Kakac S. Heat Conduction. 4th ed. New York: Taylor & Francis Group, 2008
[42]  42 Holman J P. Heat Transfer. 10th ed. Boston: McGraw Hill Higher Education, 2010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133