全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

圈量子引力的动力学

DOI: 10.1360/N972015-00942, PP. 3287-3293

Keywords: 圈量子引力,量子动力学,哈密顿约束

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为量子引力论的一种重要的候选理论,圈量子引力已取得了长足的进展.当今圈量子引力研究的一个核心而艰巨的课题是如何建立合理的量子动力学,具体到圈量子引力的正则形式中,动力学问题集中体现为合理构造密顿约束算符以及求解相应的约束方程.本文介绍了圈量子引力的基本思想以及圈量子引力中量子动力学研究的最新进展.新进展侧重于哈密顿约束算符的构造及其所定义的希尔伯特空间.

References

[1]  1 Thiemann T. Modern Canonical Quantum General Relativity. Cambridge: Cambridge University Press, 2007
[2]  2 Rovelli C. Quantum Gravity. Cambridge: Cambridge University Press, 2004
[3]  3 Ashtekar A, Lewandowski J. Background independent quantum gravity: A status report. Class Quant Grav, 2004, 21: R53
[4]  4 Han M, Ma Y, Huang W. Fundamental structure of loop quantum gravity. Int J Mod Phys D, 2007, 16: 1397-1474
[5]  5 Thiemann T. A length operator for canonical quantum gravity. J Math Phys, 1998, 39: 3372-3392
[6]  6 Bianchi E. The length operator in loop quantum gravity. Nucl Phys B, 2009, 807: 591-624
[7]  7 Ma Y, Soo C, Yang J. New length operator for loop quantum gravity. Phys Rev D, 2010, 81: 124026
[8]  8 Rovelli C, Smolin L. Discreteness of area and volume in quantum gravity. Nucl Phys B, 1995, 442: 593-622
[9]  9 Ashtekar A, Lewandowski J. Quantum theory of geometry: I. Area operators. Class Quant Grav, 1997, 14: A55-A82
[10]  10 Ashtekar A, Lewandowski J. Quantum theory of geometry: II. Volume operators. Adv Theor Math Phys, 1998, 1: 388-429
[11]  11 Thiemann T. Closed formula for the matrix elements of the volume operator in canonical quantum gravity. J Math Phys, 1998, 39: 3347-3371
[12]  12 Yang J, Ma Y. Graphical method in loop quantum gravity: I. Derivation of the closed formula for the matrix element of the volume operator. arXiv:1505.00223 [gr-qc]
[13]  13 Ashtekar A, Pawlowski T, Singh P. Quantum nature of the big bang: Improved dynamics. Phys Rev D, 2006, 74: 084003
[14]  14 Ding Y, Ma Y, Yang J. Effective scenario of loop quantum cosmology. Phys Rev Lett, 2009, 102: 051301
[15]  15 Yang J, Ding Y, Ma Y. Alternative quantization of the Hamiltonian in loop quantum cosmology. Phys Lett B, 2009, 682: 1-7
[16]  16 Bodendorfer N, Thiemann T, Thurn A. New variables for classical and quantum gravity in all dimensions: III. Quantum theory. Class Quant Grav, 2013, 30: 045003
[17]  17 Zhang X, Ma Y. Extension of loop quantum gravity to ?(R) theories. Phys Rev Lett, 2011, 106: 171301
[18]  18 Zhang X, Ma Y. Nonperturbative loop quantization of scalar-tensor theories of gravity. Phys Rev D, 2011, 84: 104045
[19]  19 Thiemann T. Quantum spin dynamics (QSD). Class Quant Grav, 1998, 15: 839-873
[20]  20 Thiemann T. Quantum spin dynamics (QSD): II. The kernel of the Wheeler-DeWitt constraint operator. Class Quant Grav, 1998, 15: 875-905
[21]  21 Alesci E, Rovelli C. A regularization of the Hamiltonian constraint compatible with the spinfoam dynamics. Phys Rev D, 2010, 82: 044007
[22]  22 Lewandowski J, Sahlmann H. Symmetric scalar constraint for loop quantum gravity. Phys Rev D, 2015, 91: 044022
[23]  23 Alesci E, Assanioussi M, Lewandowski J, et al. Hamiltonian operator for loop quantum gravity coupled to a scalar field. Phys Rev D, 2015, 91: 124067
[24]  24 Assanioussi M, Lewandowski J, M?kinen I. New scalar constraint operator for loop quantum gravity. Phys Rev D, 2015, 92: 044042
[25]  25 Yang J, Ma Y. New Hamiltonian constraint operator for loop quantum gravity. Phys Lett B, 2015, 751: 343-347
[26]  26 Ashtekar A, Lewandowski J, Marolf D, et al. Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J Math Phys, 1995, 36: 6456-6493
[27]  27 Thiemann T. Quantum spin dynamics (QSD): V. Quantum gravity as the natural regulator of matter quantum field theories. Class Quant Grav, 1998, 15: 1281-1314
[28]  28 Tikhonov A N. On the stability of inverse problems. Dokl Akad Nauk SSSR, 1943, 39: 195-198

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133