1 Thiemann T. Modern Canonical Quantum General Relativity. Cambridge: Cambridge University Press, 2007
[2]
2 Rovelli C. Quantum Gravity. Cambridge: Cambridge University Press, 2004
[3]
3 Ashtekar A, Lewandowski J. Background independent quantum gravity: A status report. Class Quant Grav, 2004, 21: R53
[4]
4 Han M, Ma Y, Huang W. Fundamental structure of loop quantum gravity. Int J Mod Phys D, 2007, 16: 1397-1474
[5]
5 Thiemann T. A length operator for canonical quantum gravity. J Math Phys, 1998, 39: 3372-3392
[6]
6 Bianchi E. The length operator in loop quantum gravity. Nucl Phys B, 2009, 807: 591-624
[7]
7 Ma Y, Soo C, Yang J. New length operator for loop quantum gravity. Phys Rev D, 2010, 81: 124026
[8]
8 Rovelli C, Smolin L. Discreteness of area and volume in quantum gravity. Nucl Phys B, 1995, 442: 593-622
[9]
9 Ashtekar A, Lewandowski J. Quantum theory of geometry: I. Area operators. Class Quant Grav, 1997, 14: A55-A82
[10]
10 Ashtekar A, Lewandowski J. Quantum theory of geometry: II. Volume operators. Adv Theor Math Phys, 1998, 1: 388-429
[11]
11 Thiemann T. Closed formula for the matrix elements of the volume operator in canonical quantum gravity. J Math Phys, 1998, 39: 3347-3371
[12]
12 Yang J, Ma Y. Graphical method in loop quantum gravity: I. Derivation of the closed formula for the matrix element of the volume operator. arXiv:1505.00223 [gr-qc]
[13]
13 Ashtekar A, Pawlowski T, Singh P. Quantum nature of the big bang: Improved dynamics. Phys Rev D, 2006, 74: 084003
[14]
14 Ding Y, Ma Y, Yang J. Effective scenario of loop quantum cosmology. Phys Rev Lett, 2009, 102: 051301
[15]
15 Yang J, Ding Y, Ma Y. Alternative quantization of the Hamiltonian in loop quantum cosmology. Phys Lett B, 2009, 682: 1-7
[16]
16 Bodendorfer N, Thiemann T, Thurn A. New variables for classical and quantum gravity in all dimensions: III. Quantum theory. Class Quant Grav, 2013, 30: 045003
[17]
17 Zhang X, Ma Y. Extension of loop quantum gravity to ?(R) theories. Phys Rev Lett, 2011, 106: 171301
[18]
18 Zhang X, Ma Y. Nonperturbative loop quantization of scalar-tensor theories of gravity. Phys Rev D, 2011, 84: 104045
[19]
19 Thiemann T. Quantum spin dynamics (QSD). Class Quant Grav, 1998, 15: 839-873
[20]
20 Thiemann T. Quantum spin dynamics (QSD): II. The kernel of the Wheeler-DeWitt constraint operator. Class Quant Grav, 1998, 15: 875-905
[21]
21 Alesci E, Rovelli C. A regularization of the Hamiltonian constraint compatible with the spinfoam dynamics. Phys Rev D, 2010, 82: 044007
[22]
22 Lewandowski J, Sahlmann H. Symmetric scalar constraint for loop quantum gravity. Phys Rev D, 2015, 91: 044022
[23]
23 Alesci E, Assanioussi M, Lewandowski J, et al. Hamiltonian operator for loop quantum gravity coupled to a scalar field. Phys Rev D, 2015, 91: 124067
[24]
24 Assanioussi M, Lewandowski J, M?kinen I. New scalar constraint operator for loop quantum gravity. Phys Rev D, 2015, 92: 044042
[25]
25 Yang J, Ma Y. New Hamiltonian constraint operator for loop quantum gravity. Phys Lett B, 2015, 751: 343-347
[26]
26 Ashtekar A, Lewandowski J, Marolf D, et al. Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J Math Phys, 1995, 36: 6456-6493
[27]
27 Thiemann T. Quantum spin dynamics (QSD): V. Quantum gravity as the natural regulator of matter quantum field theories. Class Quant Grav, 1998, 15: 1281-1314
[28]
28 Tikhonov A N. On the stability of inverse problems. Dokl Akad Nauk SSSR, 1943, 39: 195-198