全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

最小热阻原理在组合式相变材料蓄热过程优化中的应用

DOI: 10.1360/N972014-01319, PP. 3377-3385

Keywords: 组合式相变材料,融化温度,最小热阻原理,优化,温差场均匀性原则

Full-Text   Cite this paper   Add to My Lib

Abstract:

最小热阻原理为近年来火积理论中所提出的传热过程优化的新方法.本文基于最小热阻原理对组合式相变材料蓄热过程进行了优化.通过变分原理,获得了组合式相变材料最佳融化温度的通用表达式.在此基础上,进一步研究了相变材料数对火积耗散热阻和蓄热性能的影响,探讨了最小热阻原理用于组合式相变材料蓄热过程优化的可行性.定义了组合效率,考察了传热单元数和热容流率对火积耗散热阻的影响.结果表明,组合效率随相变材料数的增加逐渐提高,火积耗散热阻随传热单元数和热容流率的增加逐渐降低,其提高与降低的幅度均逐渐减弱,该研究为组合式相变材料的遴选以及流动和结构参数的设计提供了理论指导.此外,基于最小热阻原理的优化分析,提出了相变蓄热过程的温差场均匀性原则,为组合式相变材料的优化提供了一种新的优化标准.

References

[1]  1 Farid M M, Kanzawa A. Thermal performance of a heat storage module using PCM's with different melting temperatures: Mathematical modeling. J Sol Energy Eng, 1989, 111: 152-157
[2]  2 Farid M M, Kim Y, Kansawa A. Thermal performance of a heat storage module using PCM's with different melting temperature: Experimental. J Sol Energy Eng, 1990, 112: 125-131
[3]  4 Cui H T, Yuan X G, Hou X B. Thermal performance analysis for a heat receiver using multiple phase change materials. Appl Therm Eng, 2003, 23: 2353-2361
[4]  5 Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy, 2007, 81: 829-837
[5]  6 Seeniraj R V, Lakshmi Narasimhan N. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy, 2008, 82: 535-542
[6]  7 Ait Adine H, EI Qarnia H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model, 2009, 33: 2132-2144
[7]  8 Aldoss T K, Rahman M M. Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Conv Manag, 2014, 83: 79-87
[8]  9 Yang L, Zhang X S, Xu G Y. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build, 2014, 68: 639-646
[9]  10 Jegadheeswaran S, Pohekar S D. Performance enhancement in latent heat thermal storage system: A review. Renew Sust Energ Rev, 2009, 13: 2225-2244
[10]  11 Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sust Energ Rev, 2012, 16: 2118-2132
[11]  12 Fang M, Chen G M. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng, 2007, 27: 994-1000
[12]  3 Gong Z X, Mujumdar A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl Therm Eng, 1996, 16: 807-815
[13]  13 Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545-2556
[14]  14 Chen Q, Wang M, Pan N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34: 1199-1206
[15]  15 Chen Q, Ren J X. The ralationship between generalized thermal resistance and entransy dissipation for convection heat transfer (in Chinese). Chin Sci Bull, 2008, 53: 1730-1736 [陈群, 任建勋. 对流换热过程的广义热阻及其与火积耗散的关系. 科学通报, 2008, 53: 1730-
[16]  16 Wu J, Cheng X T. Generalized thermal resistance and its application to thermal radiation based on entransy theory. Int J Heat Mass Transfer, 2013, 58: 374-381
[17]  17 Wu J, Liang X G. Application of entransy dissipation extremun principle in radiative heat transfer optimzation. Sci China Ser E: Tech Sci, 2008, 51: 1306-1314
[18]  18 Xia S J, Chen L G, Sun F R. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54: 3587-3595
[19]  19 Qian X D, Li Z X. Analysis of entransy dissipation in heat exchangers. Int J Therm Sci, 2011, 50: 608-614
[20]  20 Guo J F, Xu M T. The application of entransy dissipation theory in optimization design of heat exchanger. Appl Therm Eng, 2012, 36: 227-235
[21]  21 Yuan F, Chen Q. A global optimization method for evaporative cooling systems based on the entransy theory. Energy, 2012, 42: 181-191
[22]  22 Chen Q, Yang K D, Wang M, et al. A new approach to analysis and optimization of evaporative cooling system I: Theory. Energy, 2010, 35: 2448-2454
[23]  23 Chen Q, Pan N, Guo Z Y. A new approach to analysis and optimization of evaporative cooling system II: Applications. Energy, 2011, 36: 2890-2898
[24]  24 Guo J F, Huai X L. Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory. Energy, 2012, 41: 335-343
[25]  25 Chen Q, Xu Y C. An entransy dissipation-based optimization principle for building central chilled water systems. Energy, 2012, 37: 571-579
[26]  26 Li Q Y, Chen Q. Application of entransy theory in the heat transfer optimization of flat-plate solar collectors (in Chinese). Chin Sci Bull, 2011, 56: 2819-2826 [李秦宜, 陈群. 平板太阳能集热器传热性能的火积理论优化. 科学通报, 2011, 56: 2819-
[27]  27 Chen L G. Progress in entransy theory and its applications. Chin Sci Bull, 2012, 57: 4404-4426
[28]  28 Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int Commun Heat Mass Transfer, 2014, 52: 26-32
[29]  29 Feng H J, Chen L G, Xie Z H, et al. Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull, 2014, 59: 2470-2477
[30]  30 Tao Y B, He Y L, Liu Y K, et al. Performance optimization of two-stage latent heat storage unit based on entransy theory. Int J Heat Mass Transfer, 2014, 77: 695-703
[31]  31 Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer—A review and update. Int J Heat Mass Transfer, 2013, 63: 65-81
[32]  32 Qian W C. Variational Method and Finite Element (in Chinese). Beijing: Science Press, 1980 [钱伟长. 变分法及有限元. 北京: 科学出版社,
[33]  33 Guo Z Y, Li Z X, Zhou S Q, et al. Principle of uniformity temperature difference field in heat exchanger. Sci China Ser E: Tech Sci, 1996, 39: 68-75
[34]  34 Guo Z Y, Zhou S Q, Li Z X, et al. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger. Int J Heat Mass Transfer, 2002, 45: 2119-2127

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133