1 Farid M M, Kanzawa A. Thermal performance of a heat storage module using PCM's with different melting temperatures: Mathematical modeling. J Sol Energy Eng, 1989, 111: 152-157
[2]
2 Farid M M, Kim Y, Kansawa A. Thermal performance of a heat storage module using PCM's with different melting temperature: Experimental. J Sol Energy Eng, 1990, 112: 125-131
[3]
4 Cui H T, Yuan X G, Hou X B. Thermal performance analysis for a heat receiver using multiple phase change materials. Appl Therm Eng, 2003, 23: 2353-2361
[4]
5 Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy, 2007, 81: 829-837
[5]
6 Seeniraj R V, Lakshmi Narasimhan N. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy, 2008, 82: 535-542
[6]
7 Ait Adine H, EI Qarnia H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model, 2009, 33: 2132-2144
[7]
8 Aldoss T K, Rahman M M. Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Conv Manag, 2014, 83: 79-87
[8]
9 Yang L, Zhang X S, Xu G Y. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build, 2014, 68: 639-646
[9]
10 Jegadheeswaran S, Pohekar S D. Performance enhancement in latent heat thermal storage system: A review. Renew Sust Energ Rev, 2009, 13: 2225-2244
[10]
11 Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sust Energ Rev, 2012, 16: 2118-2132
[11]
12 Fang M, Chen G M. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng, 2007, 27: 994-1000
[12]
3 Gong Z X, Mujumdar A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl Therm Eng, 1996, 16: 807-815
[13]
13 Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545-2556
[14]
14 Chen Q, Wang M, Pan N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34: 1199-1206
[15]
15 Chen Q, Ren J X. The ralationship between generalized thermal resistance and entransy dissipation for convection heat transfer (in Chinese). Chin Sci Bull, 2008, 53: 1730-1736 [陈群, 任建勋. 对流换热过程的广义热阻及其与火积耗散的关系. 科学通报, 2008, 53: 1730-
[16]
16 Wu J, Cheng X T. Generalized thermal resistance and its application to thermal radiation based on entransy theory. Int J Heat Mass Transfer, 2013, 58: 374-381
[17]
17 Wu J, Liang X G. Application of entransy dissipation extremun principle in radiative heat transfer optimzation. Sci China Ser E: Tech Sci, 2008, 51: 1306-1314
[18]
18 Xia S J, Chen L G, Sun F R. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54: 3587-3595
[19]
19 Qian X D, Li Z X. Analysis of entransy dissipation in heat exchangers. Int J Therm Sci, 2011, 50: 608-614
[20]
20 Guo J F, Xu M T. The application of entransy dissipation theory in optimization design of heat exchanger. Appl Therm Eng, 2012, 36: 227-235
[21]
21 Yuan F, Chen Q. A global optimization method for evaporative cooling systems based on the entransy theory. Energy, 2012, 42: 181-191
[22]
22 Chen Q, Yang K D, Wang M, et al. A new approach to analysis and optimization of evaporative cooling system I: Theory. Energy, 2010, 35: 2448-2454
[23]
23 Chen Q, Pan N, Guo Z Y. A new approach to analysis and optimization of evaporative cooling system II: Applications. Energy, 2011, 36: 2890-2898
[24]
24 Guo J F, Huai X L. Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory. Energy, 2012, 41: 335-343
[25]
25 Chen Q, Xu Y C. An entransy dissipation-based optimization principle for building central chilled water systems. Energy, 2012, 37: 571-579
[26]
26 Li Q Y, Chen Q. Application of entransy theory in the heat transfer optimization of flat-plate solar collectors (in Chinese). Chin Sci Bull, 2011, 56: 2819-2826 [李秦宜, 陈群. 平板太阳能集热器传热性能的火积理论优化. 科学通报, 2011, 56: 2819-
[27]
27 Chen L G. Progress in entransy theory and its applications. Chin Sci Bull, 2012, 57: 4404-4426
[28]
28 Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int Commun Heat Mass Transfer, 2014, 52: 26-32
[29]
29 Feng H J, Chen L G, Xie Z H, et al. Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull, 2014, 59: 2470-2477
[30]
30 Tao Y B, He Y L, Liu Y K, et al. Performance optimization of two-stage latent heat storage unit based on entransy theory. Int J Heat Mass Transfer, 2014, 77: 695-703
[31]
31 Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer—A review and update. Int J Heat Mass Transfer, 2013, 63: 65-81
[32]
32 Qian W C. Variational Method and Finite Element (in Chinese). Beijing: Science Press, 1980 [钱伟长. 变分法及有限元. 北京: 科学出版社,
[33]
33 Guo Z Y, Li Z X, Zhou S Q, et al. Principle of uniformity temperature difference field in heat exchanger. Sci China Ser E: Tech Sci, 1996, 39: 68-75
[34]
34 Guo Z Y, Zhou S Q, Li Z X, et al. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger. Int J Heat Mass Transfer, 2002, 45: 2119-2127