全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

新型锂盐Li[N(SO2OCH(CF3)2)2]电解液的表征与性能

DOI: 10.1360/972011-2026, PP. 2623-2631

Keywords: 双(1,1,1,3,3,3-六氟异丙氧基磺酰)亚胺锂,电解液,理化性能,锂离子电池,相容性

Full-Text   Cite this paper   Add to My Lib

Abstract:

以双(1,1,1,3,3,3-六氟异丙氧基磺酰)亚胺钾(K[N(SO2OCH(CF3)2)2],KHFPSI)和LiClO4为原料,在极性非质子溶剂中进行复分解反应制备高纯度的双(1,1,1,3,3,3-六氟异丙氧基磺酰)亚胺锂(Li[N(SO2OCH(CF3)2)2],LiHFPSI),利用核磁共振(NMR)、红外光谱(FTIR)、元素分析(EA)和离子色谱(IC)对其进行结构表征及杂质分析,并通过交流阻抗、循环伏安、线性电位扫描以及计时电流法等方法对LiHFPSI-EC/EMC(37,v/v)电解液体系的物化和电化学性质进行了系统的研究.结果表明,LiHFPSI电解液具有较高的耐氧化电位(5.7Vvs.Li+/Li),良好的Al箔钝化性能,并与人造石墨有较好的相容性;采用LiHFPSI电解液的石墨/LiCoO2锂离子电池体现出较传统导电盐LiPF6更好的循环性能以及容量保持能力.

References

[1]  1 薛照明, 陈春华. 锂离子电池非水电解质锂盐的研究进展. 化学进展, 2005, 17: 400–405
[2]  2 许梦清, 左晓希, 李伟善, 等. 丁磺酸内酯对锂离子电池性能及负极界面的影响. 物理化学学报, 2006, 22: 335–340
[3]  3 张仁刚, 赵世玺, 周振平, 等. 锂离子电池电解质的最新研究进展. 功能材料, 2002, 33: 125–128
[4]  4 Armand M, Kadiri C E M F El. Bis perhalogenoacyl-or sulfonyl-imides of alkali metals, their solid solutions with plastic materials and their use to the constitution of conductor elements for electrochemical generators. United States Patent US 4505997, 1985-3-19
[5]  7 聂进, 赵忠明, 小林宏, 等. 一类新型多氟氮超酸锂盐电解液的性质研究. 华中理工大学学报, 1996, 24: 96–98
[6]  8 Kita F, Kawakami A, Nie J, et al. On the characteristics of electrolytes with new lithium imide salts. J Power Sources, 1997, 68: 307–310??
[7]  9 Kita F, Sakata H, Sinomoto S, et al. Characteristics of the electrolyte with fluoro organic lithium salts. J Power Sources, 2000, 90: 27–32??
[8]  11 Yang H, Zhuang G V, Ross P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sources, 2006, 161: 573–579??
[9]  17 许梦清. 锂离子电池电介质功能组分的作用机理及应用研究. 博士学位论文. 广州: 华南理工大学, 2009
[10]  19 Zhou Z B, Takeda M, Fujii T, et al. Li[C2F5BF as an electrolyte salt for 4 V class lithium-ion cells. J Electrochem Soc, 2005, 152: A351–A356
[11]  5 Schmidt M, Heider U, Kuehner A, et al. Lithium fluoroalkylphosphates: A new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources, 2001, 97: 557–560??
[12]  6 Xu W, Angell C A. LiBOB and its derivatives weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid-State Lett, 2001, 4: E1–E4
[13]  10 Han H B, Zhou S S, Zhang D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J Power Sources, 2011, 196: 3623–3632??
[14]  12 Ding M S. Electrolytic conductivity and glass transition temperatures as functions of salt content, solvent composition, or temperature for LiBF4 in propylene carbonate + diethyl carbonat. J Chem Eng Data, 2004, 49: 1102–1109
[15]  13 Gu G Y, Laura R, Abraham K M. Conductivity-temperature behavior of organic electrolytes. Electrochem Solid-State Lett, 1999, 2: 486–489??
[16]  14 郑洪河. 锂离子电池电解质. 北京: 化学工业出版社, 2007
[17]  15 Li L F, Zhou S S, Han H B, et al. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J Electrochem Soc, 2011, 158: A74–A82
[18]  16 Campion C L, Li W T, Lucht B L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J Electrochem Soc, 2005, 152: A2327–A2334??
[19]  18 Zhang S S, Xu K, Jow T R. Study of LiBF4 as an electrolyte salt for a Li-ion battery. J Electrochem Soc, 2002, 149: A586–A590
[20]  20 Morita M, Shibata T, Yoshimoto N, et al. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim Acta, 2002, 47: 2787–2793??
[21]  21 Rnanaraj J S, Levi M D, Gofer Y, et al. LiPF3[CF2CF3: A salt for rechargeable lithium ion batteries. J Electrochem Soc, 2003, 150: A445–A454

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133