全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

智能电网储能用二次电池体系

DOI: 10.1360/972011-2190, PP. 2545-2560

Keywords: 智能电网,储能,二次电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

储能用二次电池体系在风能、太阳能等可再生能源发电、智能电网建设等方面有着广阔的应用前景.本文对铅酸电池、钠硫电池、液流电池和锂离子电池的工作原理、特点、国内外研究现状、应用情况及发展趋势进行了综述,提出了制约储能电池发展瓶颈问题,储能电池需关注长寿命、低成本、高安全、大容量、高功率、快速充放电和环境适应性等性能指标,展望了储能二次电池体系未来的发展趋势.

References

[1]  1 Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid. Chem Rev, 2011, 111: 3577-3613??
[2]  4 Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334: 928-935??
[3]  5 Chang Y, Mao X X, Zhao Y F, et al. Lead-acid battery use in the development of renewable energy systems in China. J Power Sources, 2009,191: 176-183??
[4]  6 Moseley P T, Nelson R F, Hollenkamp A F. The role of carbon in valve-regulated lead-acid battery technology. J Power Sources, 2006, 157:3-10??
[5]  7 Moseley P T. Consequences of including carbon in the negative plates of valve-regulated lead-acid batteries exposed to high-rate partial- state-of-charge operation. J Power Sources, 2009, 191: 134-138??
[6]  9 Buiel E, Eshkenazi V, Rabinovich L, et al. Hybrid energy storage device and method of making same. US Patent, US8023251, 2011-9-20
[7]  10 Lam L T, Louey R. Development of ultra-battery for hybrid-electric vehicle applications. J Power Sources, 2006, 158: 1140-1148??
[8]  11 Virkar A V, Armstrong T J, Weber N, et al. Role of coupled transport in the fabrication of sodium β"-alumina-containing ceramics by a vapor phase process. High Temp Mater Proc, 2002, 5: 200-211
[9]  12 Wen Z Y, Cao J D, Gu Z H, et al. Research on sodium sulfur battery for energy storage. Solid State Ionics, 2008, 179: 1697-1791??
[10]  15 Lide D R. CRC Handbook of Chemistry and Physics. Bora Raton, FL: CRC Press, 2010
[11]  16 张华民, 张宇, 刘宗浩, 等. 液流储能电池技术研究进展. 化学进展, 2009, 21: 2333-2340
[12]  21 Xu N S, Li X, Zhao X, et al. A novel solid oxide redox flow battery for grid energy storage. Energy Environ Sci, 2011, 4: 4942-4946??
[13]  22 Derek P , Richard W. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead (II). Part II. Flow cell studies. Phys Chem Chem Phys, 2004, 6: 1779-1785
[14]  23 张胜涛, 李文坡, 封雪松, 等. 液流电池的研究进展. 电源技术, 2008, 32: 569-572
[15]  26 Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21: 4593-4607??
[16]  27 Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20:2878-2887??
[17]  28 Chen J, Cheng F Y. Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res, 2009, 42: 713-723??
[18]  29 Cheng F Y, Liang J, Tao Z L, et al. Functional materials for rechargeable batteries. Adv Mater, 2011, 23: 1695-1715??
[19]  30 Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials. Energy Environ Sci, 2011, 4: 1113-1132??
[20]  31 田雷雷, 庄全超, 李佳, 等. 锂离子在石墨烯材料中的嵌入脱出机制. 科学通报, 2011, 56: 1421-1439
[21]  32 Liu C, Li F, Ma L P, et al. Advanced materials for energy storage. Adv Mater, 2010, 22: E28-E62??
[22]  33 Chen J, Xu L N, Li W Y, et al. .α-Fe2O3 nanobutes in gas sensor and lithium-ion battery application. Adv Mater, 2005, 17: 582-586
[23]  34 Cao A M, Hu J S, Liang H P, et al. V2O5 hollow microsphere self-assembled by nanorods and its potential in lithium ion battery. Angew Chem Int Ed, 2005, 44: 4392-4395
[24]  36 Nakahara K, Nakajima R, Matsushima T, et al. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J Power Sources, 2003, 117: 131-136??
[25]  37 陈军. 高能二次电池关键材料的研究进展. 功能材料信息, 2007, 4: 12-22
[26]  38 熊小芹, 蒋妍, 夏圣安, 等. 高度有序LiNi2/3Mn1/3O2 正极材料的制备与改性. 科学通报, 2010, 55: 2520-2525
[27]  41 Wang Y G, Wang Y R, Hosono E, et al. Structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed, 2008,47: 7461-7465??
[28]  42 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002, 1: 123-128??
[29]  45 Chen H Y, Armand M, Courty M, et al. Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery. J Am Chem Soc, 2009, 131: 8984-8988??
[30]  49 Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed, 2010, 49: 2371-2374??
[31]  50 Hassoun J, Scrosati B. A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed, 2011, 50: 5904-5908??
[32]  51 Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater, 2011, 23: 5641-5644??
[33]  52 杨勇, 程琥, 杜洪彦, 等. 复合锂电池隔膜及其制备方法. 中国发明专利, 200310119294.1, 2003-12-03
[34]  53 陈人杰, 张海琴, 吴锋. 离子液体在电池中的应用. 化学进展, 2011, Z1: 366-373
[35]  54 Guerfi A, Dontigny M, Charest P, et al. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sources, 2010, 195: 845-852??
[36]  55 Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem, 2010, 2: 760-765??
[37]  2 Armaroli N, Balzani V. Towards an electricity-powered world. Energy Environ Sci, 2011, 4: 3193-3222??
[38]  3 张文亮, 丘明, 来小康. 储能技术在电力系统中的应用. 电网技术, 2008, 32: 1-9
[39]  8 Duffy N W, Baldsing W G A, Ozgun H, et al. Towards high power asymmetric supercapacitors. In: Advanced Capacitor World Summit, San Diego, CA, USA, 2006
[40]  13 Lu X C, Xia G G, Lemmon J P, et al. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J Power Sources, 2010, 195: 2431-2442??
[41]  14 Prakash J, Redey L, Vissers D R. Electrochemical behavior of nonporous Ni/NiCl2 electrodes in chloroaluminate melts. J Electrochem Soc,2000, 147: 502-507??
[42]  17 Qiu J Y, Li M Y, Ni J F, et al. Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. J Membr Sci, 2007, 297: 174-180??
[43]  18 Jian X G, Yan C, Zhang H M, et al. Synthesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion- exchange membrane. Chin Chem Lett, 2007, 18: 1269-1272??
[44]  19 文越华, 程杰, 张华民, 等. 液流储能电池电化学体系的进展. 电池, 2008, 38: 247-249
[45]  20 Wang W, Kim S, Chen B W, et al. A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy Environ Sci,2011, 4: 4068-4073??
[46]  24 Ponce de León C, Frías-Ferrer A, González-García J, et al. Redox flow cells for energy conversion. J Power Sources, 2006, 160: 716-732??
[47]  25 Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development. J Electrochem Soc, 2011,158: R55-R79
[48]  35 Wang D H, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 2009, 3:907-9142012 年9 月 第57 卷 第27 期2560??
[49]  39 Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc, 2006, 153: A1345-A1352
[50]  40 Huang Y H, Goodenough J B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater,2008, 20: 7237-7241??
[51]  43 曾令杰, 龚强, 廖小珍, 等. 微量Mn 掺杂LiFePO4/C 材料的低温电化学性能. 科学通报, 2010, 55: 2748-2752
[52]  44 Gong Z L, Li Y X, Yang Y. Synthesis and characterization of Li>2Mn1-xFexSiO4 as a cathode materials for lithium-ion batteries. Electrochem Solid State Lett, 2006, 9: A542-A544??
[53]  46 王维坤, 余仲宝, 苑克国, 等. 高比能锂硫电池关键材料的研究. 化学进展, 2011, 23: 540-547
[54]  47 姚真东, 魏巍, 王久林, 等. 锂硫二次电池正极研究进展. 物理化学学报, 2011, 27: 1005-1016
[55]  48 Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009, 8:500-506??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133