全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

纳米结构的过渡金属氮化物复合物储能材料

, PP. 2561-2569

Keywords: 纳米复合物,过渡金属氮化物,锂离子电池,超级电容器

Full-Text   Cite this paper   Add to My Lib

Abstract:

日益凸显的能源安全与气候变化问题引发了人们对可再生能源的不懈追求,从而带来储能电池的革命性发展.高性能储能电池应该具有高能量密度、高功率密度、高安全性能、长使用寿命等诸多特征,这就要求人们研究开发新型电极材料.近年来,纳米材料以其独特的表面效应、小尺寸效应以及量子尺寸效应从而产生强大电荷储存能力引起人们的广泛关注.本文综述了近年来本课题组在过渡金属氮化物纳米复合材料用于储能领域的研究进展,基于电子和离子混合传输理念和有利的电荷跃迁界面,阐述了其在高性能锂离子电池和超级电容器等方面的应用.

References

[1]  2 Fu Z W, Wang Y, Yue X L, et al. Electrochemical reactions of lithium with transition metal nitride electrodes. J Phy Chem B, 2004, 108: 2236–2244??
[2]  10 Kim I, Kumta P N, Blomgren G E. Si/TiN nanocomposites: New anode materials for Li-ion batteries. Electrochem Solid-State Lett, 2000, 3: 493–496
[3]  11 Wen Z, Cui S, Pu H, et al. Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst. Adv Mater, 2011, 23: 5445–5450??
[4]  12 Maier J. Size effects on mass transport and storage in lithium batteries. J Power Sources, 2007, 174: 569–574??
[5]  19 Guo Y G, Hu Y S, Maier J. Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun, 2006, 2783–2785
[6]  20 Pereira N, Balasubramanian M, Dupont L, et al. The electrochemistry of germanium nitride with lithium. J Electrochem Soc, 2003, 150: A1118–A1128??
[7]  21 Pereira N, Klein L C, Amatucci G G. The electrochemistry of Zn3N2 and LiZnN. J Electrochem Soc, 2002, 149: A262–A271??
[8]  22 Pereira N, Dupont L, Tarascon J M, et al. Electrochemistry of Cu3N with lithium. J Electrochem Soc, 2003, 150: A1273–A1280??
[9]  25 Geim A K, Novoselov K S. The rise of graphene. Nat Mat, 2007, 6: 183–191??
[10]  27 Ogumi Z. A. C. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite. J Power Sources, 1997, 68: 227–231??
[11]  28 Yue Y H, Han P X, Cui G L, et al. In situ synthesis of graphene/titanium nitride hybrid material with highly improved performance for lithium storage. J Mater Chem, 2012, 22: 4938–4943??
[12]  29 庄全超, 陈作锋, 董全峰, 等. 石墨负极首次阴极极化过程的电化学阻抗谱研究. 科学通报, 2006, 51: 17–20
[13]  30 田雷雷, 庄全超, 李佳, 等. 锂离子在石墨烯材料中的嵌入脱出机制.科学通报, 2011, 56: 1431–1439
[14]  31 Zhang K J, Wang H B, Cui G L, et al. A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. J Mater Chem, 2011, 21: 11916–11922??
[15]  32 Jang B Z, Liu C G, David N, et al. Graphene surface-enabled lithium ion-exchanging cells: Next-generation high-power energy storage devices. Nano Lett, 2011, 11: 3785–3791??
[16]  35 Dong S M, Chen X, Cui G L, et al. TiN/VN composites with core/shell structure for supercapacitors. Mater Res Bull, 2011, 46: 835–839Dong S M, Chen X, Cui G L, et al. One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ Sci, 2011, 4: 3502–3508??
[17]  1 严定中. 新型能源替代化石能源的有效途径——低碳燃料排放标准. 城市, 2010, 1: 74–75
[18]  3 Wang Y, Fu Z W, Yue X L, et al. Electrochemical reactivity mechanism of Ni3N with lithium. J Electrochem Soc, 2004, 151: E162
[19]  4 Sun Q, Fu Z W. An anode material of CrN for lithium-ion batteries. Solid-State Lett, 2007, 10: A189–A193
[20]  5 Sun Q, Fu Z W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries. Electrochim Acta, 2008, 54: 403–409??
[21]  6 Sun Q, Fu Z W. Cr1–xFexN (0≤X≤1) ternary transition metal nitrides as anode materials for lithium-ion batteries. Electrochem Solid-State Lett, 2008, 11: A233–A237
[22]  7 孙乾. 磁控溅射制备高价氮化物并用于锂离子电池电极材料的研究. 硕士学位论文, 上海: 复旦大学, 2009
[23]  8 辛森, 郭玉国, 万立俊. 高能量密度锂二次电池电极材料研究进展. 中国科学: 化学, 2011, 41: 1229–1239
[24]  9 Snyder M Q, Trebukhova S A, Ravdel B, et al. Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium ion battery anode. J Power Sources, 2007, 165: 379–385??
[25]  13 Aurbach D, Bruneel J L, Grondn J, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J Electrochem Soc, 1998, 145: 3024–3034??
[26]  14 Balaya P. Size effects and nanostructured materials for energy applications. Energy Environ Sci, 2008, 1: 645–654??
[27]  15 Linkov I, Steevens J. Nanomaterials: Risks and Benefits. Heidelberg: Springer, 2009
[28]  16 Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21: 4593–4607??
[29]  17 Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887??
[30]  18 Gaberscek M, Jamnik J. Impact of electrochemical wiring topology on the kinetics of insertion electrodes. J Solid State Ionics, 2006, 177: 2647–2651??
[31]  23 Harrison J F. Electronic structure of the transition metal nitrides TiN, VN, and CrN. J Phys Chem, 1996, 100: 3513–3519??
[32]  24 Cui G L, Gu L, Thomas A. A carbon/titanium vanadium nitride composite for lithium storage. ChemPhysChem, 2010, 11: 3219–3223??
[33]  26 Wang H B, Zhang C J, Cui G L, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem, 2011, 21: 5430–5434??
[34]  33 Dong S M, Chen X, Cui G L, et al. Facile preparation of mesoporous titanium nitride microsphres for electrochemical energy storage. ACS Appl Mater Interface, 2011, 3: 93–98??
[35]  34 Zhou X H, Shang C Q, Cui G L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors. ACS Appl Mater Interface, 2011, 3: 3058–3063??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133