全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

锂离子电池Sn基薄膜负极材料的研究进展

, PP. 2587-2598

Keywords: 锂离子电池,薄膜,负极,Sn基合金,Sn基氧化物

Full-Text   Cite this paper   Add to My Lib

Abstract:

薄膜锂离子电池作为各种微电子系统的首选电源被广泛研究.本文系统综述了近年来锂离子电池Sn基薄膜负极材料的研究进展,着重介绍纯Sn薄膜、Sn基合金和Sn基氧化物薄膜的制备与性能.纯Sn薄膜具有高的可逆容量,但其嵌锂/脱锂过程的巨大体积变化导致循环性能很差,而且纯Sn薄膜的制备方法及其与电解液的界面特性对电极容量衰减有很大的影响.将Sn与非活性过渡金属复合,虽可有效提高电极循环性能,但同时带来容量的损失;Sn与活性成分形成的纳米晶多相复合薄膜负极可在保持高容量的同时,获得良好的循环性能.与纯Sn薄膜负极相比,Sn基氧化物薄膜存在纳米Sn相原位生成的过程,因此具有较好的循环稳定性,但其首次不可逆容量大.已有的研究进展充分说明,微纳组织调控能够显著改善上述薄膜电极的性能.分析和总结现有Sn基薄膜负极材料的微观结构和性能之间关系的研究进展,多相多尺度结构调控应是进一步提高Sn基合金薄膜负极的容量和循环稳定性的重要途径.

References

[1]  15 Pu W H, He X M, Ren J G, et al. Electrodeposition of Sn-Cu alloy anodes for lithium batteries. Electrochim Acta, 2005, 50: 4140–4145??
[2]  16 Kim R H, Nam D H, Kwon H S. Electrochemical performance of a tin electrodeposit with a multi-layered structure for Li-ion batteries. J Power Sources, 2010, 195: 5067–5070??
[3]  19 Zhao L Z, Hub S J, Ru Q, et al. Effects of graphite on electrochemical performance of Sn/C composite thin film anodes. J Power Sources, 2008, 184: 481–484??
[4]  22 Hu R Z, Zhang Y, Zhu M. Microstructure and electrochemical properties of electron-beam deposited Sn-Cu thin film anodes for thin film lithium ion batteries. Electrochem Acta, 2008, 53: 3377–3385??
[5]  26 Shin H C, Liu M L. Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Adv Funct Mater, 2005, 15: 582–686??
[6]  29 Zhao H, Jiang C, He X, et al. Advanced structures in electrodeposited tin base anodes for lithium ion batteries. Electrochim Acta, 2007, 52: 7820–7826??
[7]  31 Beattie S D, Dahn J R. Single-bath electrodeposition of a combinatorial library of binary Cu1–xSnx alloys. J Electrochem Soc, 2003, 150: C457–C460??
[8]  32 Lee H Y, Jang S W, Lee S M. Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying. J Power Sources, 2002, 112: 8–12??
[9]  35 Mukaibo H, Sumi T, Yokoshima T, et al. Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries. Electrochem Solid-State Lett, 2003, 6: A218–A220??
[10]  36 Mukaibo H, Momma T, Osaka T. Changes of electro-deposited Sn-Ni alloy thin film for lithium ion battery anodes during charge discharge cycling. J Power Sources, 2005, 146: 457–463??
[11]  37 Crosnier O, Brousse T, Dcvaux X, et al. New anode systems for lithium ion cells. J Power Sources, 2001, 94: 169–174??
[12]  38 Zhang D W, Yang C G, Dai J, et al. Fabrication of Sn-Ni alloy film anode for Li-ion batteries by electrochemical deposition. Trans Nonferrous Metals Soc Chin, 2009, 19: 1489–1493??
[13]  39 Hassoun J, Panero S, Scrosati B. Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium ion batteries. J Power Sources, 2006, 160: 1336–1341??
[14]  40 Tamura N, Kato Y, Mikami A, et al. Study on Sn-Co alloy anodes for lithium secondary batteries I. Amorphous system. J Electrochem Soc, 2006, 153: A1626–A1632??
[15]  41 Tamura N, Kato Y, Mikami A, et al. Study on Sn-Co alloy electrodes for lithium secondary batteries II. Nanocomposite system. J Electrochem Soc, 2006, 153: A2227–A2231??
[16]  42 Ke F S, Huang L, Wei H B, et al. Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries. J Power Sources, 2007, 170: 450–455??
[17]  44 薛连杰, 黄令, 柯福生, 等. 三维多孔Sn-Co合金负极制备及其电化学性能研究.电化学, 2010, 16: 161–167
[18]  45 Bonakdarpour A, Hewitt K C, Turner R L, et al. Electrochemical and in-situ XRD studies of the lithium reaction with combinatorially sputtered Mo1-xSnx (0£x£0.50) thin films. J Electrochem Soc, 2004, 151: A470–A483
[19]  46 Beaulieu L Y, Hewitt K C, Turner R L, et al. The electrochemical reaction of Li with amorphous Si-Sn alloys. J Electrochem Soc, 2003, 150: A149–A156
[20]  47 Beaulieu L Y, Hatchard T D, Bonakdarpour A, et al. The reaction of Li with thin films studied by atomic force microscopy. J Electrochem Soc, 2003, 150: A1457–A1464??
[21]  51 Zhao L Z, Hu S J, Ru Q, et al. Effects of graphite on electrochemical performance of Sn/C composite thin film anodes. J Power Sources, 2008, 184: 481–484??
[22]  53 Hu R Z, Liu H, Zeng M Q, et al. Core/shell and multi-scale structures enhance anode performance of Sn-C-Ni composite thin film in lithium ion battery. J Mater Chem, 2011, 21: 4629–4635??
[23]  54 Hu R Z, Zhang L, Liu X, et al. Investigation of immiscible alloy system of Al-Sn thin films as anodes for lithium ion batteries. Electrochem Commun, 2008, 10: 1109–1112??
[24]  55 Hu R Z, Zeng M Q, Li C Y, et al. Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al-Sn system. J Power Sources, 2009, 118: 268–273
[25]  56 Hu R Z, Shi Q, Wang H, et al. Influences of composition on the electrochemical performance in immiscible Sn-Al thin films as anodes for lithium ion batteries. J Phys Chem C, 2009, 113: 18953–18961??
[26]  64 Li N C, Martin C R, Scrosati B. A high-rate, high-capacity, nanostructured tin oxide electrode for lithium-ion battery applications. Electrochem Solid-State Lett, 2000, 3: 316–318
[27]  66 Nam S C, Yoon Y S, Cho W I, et al. Enhancement of thin film tin oxide negative electrodes for lithium batteries. Electrochem Commun, 2001, 3: 6–10??
[28]  67 Li Y N, Zhao S L, Qin Q Z. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries. J Power Sources, 2003, 114: 113–120 ??
[29]  68 Kim Y I, Lee W H, Moon H S, et al. Effect of Si addition to thin-film SnO2 micro-battery anodes on cycling performance. J Power Sources, 2001, 101: 253–258??
[30]  69 Kim Y I, Yoon C S, Park J W. Microstructural evolution of electrochemically cycled Si-doped SnO2-lithium thin-film battery. J Solid State Chem, 2001, 160: 388–393??
[31]  70 Zhang J, Chen L B, Li C C, et al. Amorphous SnO2-SiO2 thin films with reticular porous morphology for lithium-ion batteries. Appl Phys Lett, 2008, 93: 264102–264104??
[32]  71 Ahn H J, Kim Y S, Seong T Y. Improvement of the electrochemical properties of SnO2 electrodes for lithium rechargeable battery using protective Ta2O5 thin films. Solid-State Ionics, 2005, 176: 699–702??
[33]  72 Li Y, Tu J P, Huang X H, et al. Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries. Electrochem Commun, 2007, 9: 49–53??
[34]  1 Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull, 2008, 43: 1913–1942??
[35]  2 Bates J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ion batteries. Solid State Ionics, 2000, 135: 33–45??
[36]  3 Tirado J L. Inorganic materials for the negative electrode of lithium-ion batteries: State-of the art and future prospects. Mater Sci Eng R, 2003, 40: 103–136??
[37]  4 Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta, 1999, 45: 31–50??
[38]  5 Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources, 2011, 196: 13–24??
[39]  6 Massalski T B. Binary Alloy Phase Diagram [M/CD]. 2nd ed. Materials Park, OH: ASM International, 1996
[40]  7 Morimoto H, Tobishima S I. Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries. J Power Sources, 2005, 146: 469–472??
[41]  8 Inaba M, Uno T, Tasaka A. Irreversible capacity of electrodeposited Sn thin film anode. J Power Sources, 2005, 146: 473–477??
[42]  9 Beaulieu L Y, Hatchard T D, Bonakdarpour A, et al. Reaction of Li with alloy thin films studied by in situ AFM. J Electrochem Soc, 2003, 150: A1457–A1464??
[43]  10 Hassoun J, Reale P, Panero S. The role of the interface of tin electrodes in lithium cells: An impedance study. J Power Sources, 2007, 174: 321–327??
[44]  11 Chiu K F, Lin H C, Lin K M, et al. The significant role of solid oxide interphase in enhancement of cycling performance of Sn thin-film anodes. J Electrochem Soc, 2006, 153: A1038–A1042??
[45]  12 Ui K, Kikuchi S, Kadoma Y, et al. Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries. J Power Sources, 2009, 189: 224–229??
[46]  13 Tamura N, Ohshita R, Fujimota M, et al. Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes. J Power Sources, 2002, 107: 48–55??
[47]  14 赵海鹏, 姜长印, 何向明, 等. 电沉积法制备锂离子电池用复合Sn基合金负极. 金属学报, 2007, 43: 775–779
[48]  17 Park J W, Eom J Y, Kwon H S. Charge-discharge characteristics of a layered-structure electroplated Cu/Sn anode for Li-ion batteries. Electrochim Acta, 2010, 55: 1825–1828??
[49]  18 樊小勇, 庄全超, 许金梅, 等. 锂离子电池薄膜锡负极材料的制备及容量衰减机理研究. 化学学报, 2007, 65: 165–169
[50]  20 李昌明, 黄启明, 张仁元, 等. 电沉积制备的两种形貌Sn薄膜锂离子嵌入电极性能比较. 金属学报, 2007, 43: 515–520
[51]  21 Song S W, Baek S W. Electrochemical thin film studies of Sn metals for rechargeable lithium batteries. ECS Trans, 2008, 11: 71–78
[52]  23 白红美, 陶占良, 程方益, 等. 锂离子电池锡薄膜负极制备及电化学性能研究.电化学, 2011, 17: 43–47
[53]  24 Beattie S D, Dahn J R. Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium ion batteries. J Electrochem Soc, 2003, 150: A894–A898??
[54]  25 Hu R Z, Zeng M Q, Zhu M. Cyclic durable high capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition. Electrochim Acta, 2009, 54: 2843–2850??
[55]  27 Jiang T, Zhang S C, Qiu X P, et al. Preparation and characterization of tin-based three-dimensional cellular anode for lithium ion battery. J Power Sources, 2007, 166: 503–508??
[56]  28 Du Z J, Zhang S C, Jiang T, et al. Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance. Electrochim Acta, 2010, 55: 3537–3541??
[57]  30 Ke F S, Huang L, Cai J S, et al. Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium ion batteries. Electrochim Acta, 2007, 52: 6741–6747??
[58]  33 Han X Y, Zhang F, Xiang J F, et al. Preparation and electrochemical performance of micro-nanostructured nickel. Electrochim Acta, 2009, 54: 6161–6165??
[59]  34 Kim Y L, Lee H Y, Jang S W, et al. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries. Solid State Ionics, 2003, 160: 235–240??
[60]  43 Fan X Y, Ke F S, Wei G Z, et al. Sn-Co alloy anode using porous Cu as current collector for lithium ion battery. J Alloy Compd, 2009, 476: 70–73??
[61]  48 Hatchard T D. Study of the electrochemical performance of sputtered Si1–xSn film. J Electrochem Soc, 2004, 151: A1628–1635??
[62]  49 Hatchard T D, Topple J M, Fleischauer M D, et al. Study of the electrochemical performance of SiAlSn films prepared by combinatorial sputtering. Electrochem Solid State Lett, 2003, 6: A129–A132??
[63]  50 Dahn J R, Mar R E, Fleischauer M D, et al. The impact of the addition of rare earth elements to Si1-xSnx negative electrode materials for Li-ion batteries. J Electrochem Soc, 2006, 153: A1211–A1220??
[64]  52 Marcinek M, Hardwick L J, Richardson T J, et al. Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries. J Power Sources, 2007, 173: 965–971??
[65]  57 Bazin L, Mitra S, Taberna P L, et al. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. J Power Sources, 2009, 188: 578–582??
[66]  58 Hassoun J, Panero S, Simon P, et al. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Adv Mater, 2007, 19: 1632–1635??
[67]  59 Idota Y, Kubota T, Matsufuji A. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science, 1997, 276: 1395–1397??
[68]  60 Santos-Pena J, Brousse T, Sanchez L, et al. Antimony doping effect on the electrochemical behavior of SnO2 thin film electrode. J Power Sources, 2001, 97-98: 232–234
[69]  61 Brousse T, Retoux R, Herterich U, et al. Thin-film crystalline SnO2-lithium electrodes. J Electrochem Soc, 1998, 145: 1–4??
[70]  62 Mohamedi M, Lee S J, Takahashi D. Amorphous tin oxide films: Preparation and characterization as an anode active material for lithium ion batteries. Electrochim Acta, 2001, 46: 1161–1168??
[71]  63 Zhao Y M, Zhou Q, Liu L, et al. A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries. Electrochim Acta, 2006, 51: 2639–2645??
[72]  65 Nam S C, Yoon Y S, Yun K S, et al. Reduction of irreversibility in the first charge of tin oxide thin film negative electrodes. J Electrochem Soc, 2001, 148: A220–A223??
[73]  73 薛明喆, 程孙超, 姚佳, 等. 脉冲激光沉积法制备SnSe薄膜电极及其电化学性. 物理化学学报, 2006, 22: 383–387
[74]  74 Park K S, Park Y J, Kim M K, et al. Characteristics of tin nitride thin film negative electrode for thin film microbattery. J Power Sources, 2001, 103: 67–71??
[75]  75 黎阳. 锂离子电池SnS负极及Sn-Ag-O等薄膜负极的制备与电化学性能研究. 博士学位论文. 杭州: 浙江大学, 2006. 80–101
[76]  76 Zhu J X, Guo Z P, Zhang P, et al. Highly porous reticular tin-cobalt oxide composite thin film anodes for lithium ion batteries. J Mater Chem, 2009, 19: 8360–8365??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133