1 Hill A V. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B, 1938, 126: 136-195??
[2]
2 Huxley H E, Hanson J. Changes in the cross-striations of muscle during contractions and stretch and their structural interpretation. Nature, 1954, 173: 973-976??
9 Uyeda T Q, Abramson P D, Spudich J A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA, 1996, 93: 4459-4464??
[5]
10 Holmes K C, Angert I, Jon Kull F, et al. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature, 2003, 425: 423-427??
[6]
16 Huxley A F, Simmons R M. Proposed mechanism of force generation in striated muscle. Nature, 1971, 233: 533-538??
[7]
18 Zahalak G I, Motabarzadeh I. A re-examination of calcium activation in Huxley cross-bridge model. J Biomech Eng, 1997, 119: 20-29??
[8]
19 Piazzesi G, Reconditi M, Linari M, et al. Mechanism of force generation by myosin heads in skeletal muscle. Nature, 2002, 415: 659-662 ??
[9]
20 Finer J T, Simmons R M, Spudich J A. Single myosin molecule mechanics: Pico Newton forces and nano metre steps. Nature, 1994, 368: 113-119??
[10]
22 Neptune R R, Burnfield J M, Mulroy S J. The neuromuscular demands of toe walking: A forward dynamics simulation analysis. J Biomech, 2007, 40: 1293-1300??
26 Spudich J A. The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol, 2001, 2: 387-392
[13]
27 Lymn R W, Taylor E W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 1971, 10: 4617-4624??
[14]
28 赵亚溥. 纳电子机械系统中的若干物理力学问题. 中国力学文摘, 2007, 21: 1-21
[15]
29 Munday J N, Capasso F, Parsegian V A. Measured long-range repulsive Casimir-Lifshitz forces. Nature, 2009, 457: 170-173??
[16]
30 Liu Y M, Scolari M, Im W, et al. Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: A molecular dynamics study. Proteins: Struct Funct Bioinform, 2006, 64: 156-166??
[17]
31 Nakajima H, Kunioka Y, Nakano K, et al. Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. Biochem Biophys Res Commun, 1997, 234: 178-182??
[18]
33 Guo Z, Yin Y H. Casimir effect on adhesion interaction between myosin molecular motor and actin filament. Inter J Nanosyst, 2010, 3: 9-15
[19]
38 Uyeda T Q P, Abramson P D, Spudich J A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA, 1996, 93: 4459-4464??
[20]
39 Ishijima A, Kojima H, Funatsu T, et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell, 1998, 92: 161-171??
51 Spudich J A, Sivaramakrishnan S. Myosin VI: An innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol, 2010, 11: 128-137??
[24]
52 Sweeney H L, Houdusse A. Myosin VI rewrites the rules for myosin motors. Cell, 2010, 141: 573-582??
[25]
53 Montemagno C, Bachand G. Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology, 1999, 10: 225-231??
[26]
54 Van Delden RA, Ter Wiel M K J, Pollard M M. et al. Unidirectional molecular motor on a gold surface. Nature, 2005, 437: 1337-1340??
[27]
57 Qi W, Duan L, Wang K, et al. Motor protein CF0F1 reconstituted in lipid-coated hemoglobin microcapsules for ATP Synthesis. Adv Mater, 2008, 20: 601-605??
[28]
59 Chin L, Yue P, Feng J J, et al. Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship. Biophys J, 2006, 91: 3653-3663??
[29]
61 Shu Y G, Shi H L. Cooperative effects on the kinetics of ATP hydrolysis in collective molecular motors. Phys Rev E, 2004, 69: 021912??
[30]
64 Brugues J, Casademunt J. Self-organization and cooperativity of weakly coupled molecular motors under unequal loading. Phys Rev Lett, 2009, 102: 118104??
[31]
65 Campas O, Kafri Y, Zeldovich K B, et al. Collective dynamics of interacting molecular motors. Phys Rev Lett, 2006, 97: 038101??
78 Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500-544
[37]
79 Luscher H R, Shiner J S. Simulation of action potential propagation in complex terminal arborizations. Biophys J, 1990, 58: 1389-1399??
[38]
80 Smith D O. Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. J Physiol, 1980, 301: 243-259
[39]
81 Rogers J M, McCulloch A D. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng, 1994, 41: 743-757??
[40]
82 Kandel E R, Schwartz J H, Jessell T M. Principles of Neural Science. 4th ed. New York: Elsevier, 2000
[41]
3 Huxley A F, Niedergerke R. Structural changes in muscle during contraction. Nature, 1954, 173: 971-973??
[42]
4 余志斌, 李全, 徐彭涛, 等译. 骨骼肌结构与功能. 西安: 第四军医大学出版社, 2010
[43]
6 Linke W A, Ivemeyer M, Mundel P, et al. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA, 1998, 95: 8052-8057??
[44]
7 Rayment I, Holden H M, Whittaker M. Structure of the actin-myosin complex and its implications for muscle contraction. Science, 1993, 261: 56-65
[45]
8 Rayment I, Rypniewski W R, Schmidt-Base K, et al. Three dimensional structure of myosin subfragment-1: A molecular motor. Science, 1993, 261: 50-58??
[46]
11 Fung Y C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993. 568
13 Zajac F E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 1989, 17: 359-411
[49]
14 Huxley H E. The mechanism of muscular contraction. Science, 1969, 164: 1356-1366??
[50]
15 Huxley A F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem, 1957, 7: 255-318
[51]
17 Gordon A M, Huxley A F, Julian F J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol, 1966, 184: 170-192
[52]
21 Anderson F C, Pandy M G. Static and dynamic optimization solutions for gait are practically equivalent. J Biomech, 2001, 34: 153-161??
[53]
24 舒咬根, 欧阳钟灿. 生物分子马达. 物理, 2007, 36: 735-741
[54]
25 Yamakita Y, Iio T. Conformational change of skeletal muscle troponin. J Biochem, 1989, 105: 870-874
34 Yanagida S, Kitamura K, Tanaka H, et al. Single molecule analysis of the actomyosin motor. Curr Opin Cell Biol, 2000, 12: 20-25??
[57]
35 Huxley A F. Cross-bridge action: Present views, prospects, and unknowns. J Biomech, 2000, 33: 1189-1195??
[58]
36 Kaya M, Higuchi H. Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments. Science, 2010, 329: 686-689??
[59]
37 Sellers J R, Veigel C. Direct observation of the myosin-Va power stroke and its reversal. Nat struct Mol Biol, 2010, 17: 590-595??
[60]
40 Yanagida T, Iwaki M, Ishii Y. Single molecule measurements and molecular motors. Phil Trans R Soc B, 2008, 363: 2123-2134??
[61]
41 Li G H, Cui Q. Mechanochemical coupling in myosin: A theoretical analysis with molecular dynamics and combined QM/MM reaction path calculations. J Phys Chem B, 2004, 108: 3342-3357??
[62]
42 Yang Z, Zhao Y P. QM/MM and classical molecular dynamics simulation of His-tagged peptide immobilization on nickel surface. Mat Sci Eng A-Struct, 2006, 423: 84-91??
[63]
43 Yang Z, Zhao Y P. Adsorption of his-tagged peptide to Ni, Cu and Au (100) surfaces: Molecular dynamics simulation. Eng Anal Bound Elem, 2007, 31: 402-409
[64]
44 Feynman R P, Leighton R B, Sands M. The Feynman Lectures on Physics. Boston: Addison-Wesley Longman, 1970, Chap 46
[65]
45 Astumian R D. Thermodynamics and kinetics of a Brownian motor. Science, 1997, 276: 917-922??
[66]
46 Julicher F, Ajdari A, Prost J. Modeling molecular motors. Rev Mod Phys, 1997, 69: 1269-1281??
[67]
47 Esaki S, Ishii Y, Yanagida T. Model describing the biased Brownian movement of myosin. Proc Jpn Acad, 2003, 79: 9-14??
55 Ren Q, Zhao Y P, Yuek J C, et al. Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors. Biomed Microdevices, 2006, 8: 201-208??
62 Vermeulen K C, Stienen G J M, Schmid C F, et al. Cooperative behavior of molecular motors. J Muscle Res Cell Mot, 2002, 23: 71-79??
[74]
63 Veigel C, Molloy J E. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol, 2003, 5: 980-986??
[75]
67 Alencar A M, Butler J P, Mijailovich S M. Thermodynamic origin of cooperativity in acto-myosin interactions: The coupling of short-range interactions with actin bending stiffness in an Ising-like model. Phys Rev E, 2009, 79: 041906??
[76]
70 Sanes J R, Lichtman J W. Development of the vertebrate neuromuscular junction. Ann Rev Neurosci, 1999, 22: 389-442??
[77]
71 Toyoshima C, Nakasako M, Nomura H, et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 ? resolution. Nature, 2000, 405: 647-655
[78]
72 Yin C C, D’Cruz L G, Lai F A. Ryanodine receptor arrays: Not just a pretty pattern? Cell, 2008, 18: 149-156
[79]
73 Stern M D, Pizzaro G, Rios E. Local control model of excitation-contraction coupling in skeletal muscle. J Gen Physiol, 1997, 110: 415-440??
[80]
74 Cannel M B, Allen D G. Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J, 1984, 45: 913-925??
[81]
75 Stuyvers B D, McCulloch A D, Guo J, et al. Effect of stimulation rate, sarcomere length and Ca2+ on force generation by mouse cardiac muscle. J Physiol, 2002, 544: 817-830
[82]
76 Edwards R H T, Hill D K, Jones D A. Fatigue of long duration in human skeletal muscle after exercise. J Physiol, 1977, 272: 769-778