全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

基于分子马达运行机制的骨骼肌生物力学原理研究进展

, PP. 2794-2805

Keywords: 骨骼肌,分子马达,生物力学模型,肌小节,运行机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨骼肌是人体运动之源,一直吸引着国内外学者竞相研究,旨在揭示骨骼肌收缩机理,并且相关研究成果已经获得诺贝尔奖.本文首先阐述了骨骼肌生物力学模型研究现状,归纳出自上而下和自下而上的两种开展骨骼肌生物力学模型的研究策略;并从分子马达的多力场耦合机理与集体运行机制、骨骼肌收缩的生物电化学驱动与控制原理两大方面进行了综述,讨论了进行实验验证的解决方案,总结出基于骨骼肌收缩源头——分子马达的微观运行机制来研究骨骼肌生物力学原理的新思路.最后简要评述了目前研究中存在的不足,探讨了今后需深入研究的方向.

References

[1]  1 Hill A V. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B, 1938, 126: 136-195??
[2]  2 Huxley H E, Hanson J. Changes in the cross-striations of muscle during contractions and stretch and their structural interpretation. Nature, 1954, 173: 973-976??
[3]  5 李永胜, 陈维毅. 骨骼肌收缩的本构模型: I被动行为. 力学进展, 2010, 40: 663-678
[4]  9 Uyeda T Q, Abramson P D, Spudich J A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA, 1996, 93: 4459-4464??
[5]  10 Holmes K C, Angert I, Jon Kull F, et al. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature, 2003, 425: 423-427??
[6]  16 Huxley A F, Simmons R M. Proposed mechanism of force generation in striated muscle. Nature, 1971, 233: 533-538??
[7]  18 Zahalak G I, Motabarzadeh I. A re-examination of calcium activation in Huxley cross-bridge model. J Biomech Eng, 1997, 119: 20-29??
[8]  19 Piazzesi G, Reconditi M, Linari M, et al. Mechanism of force generation by myosin heads in skeletal muscle. Nature, 2002, 415: 659-662 ??
[9]  20 Finer J T, Simmons R M, Spudich J A. Single myosin molecule mechanics: Pico Newton forces and nano metre steps. Nature, 1994, 368: 113-119??
[10]  22 Neptune R R, Burnfield J M, Mulroy S J. The neuromuscular demands of toe walking: A forward dynamics simulation analysis. J Biomech, 2007, 40: 1293-1300??
[11]  23 杨义勇, 王人成, 王延利, 等. 含神经控制的下肢肌骨系统正向动力学分析. 清华大学学报(自然科学版), 2006, 46: 1872-1875
[12]  26 Spudich J A. The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol, 2001, 2: 387-392
[13]  27 Lymn R W, Taylor E W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 1971, 10: 4617-4624??
[14]  28 赵亚溥. 纳电子机械系统中的若干物理力学问题. 中国力学文摘, 2007, 21: 1-21
[15]  29 Munday J N, Capasso F, Parsegian V A. Measured long-range repulsive Casimir-Lifshitz forces. Nature, 2009, 457: 170-173??
[16]  30 Liu Y M, Scolari M, Im W, et al. Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: A molecular dynamics study. Proteins: Struct Funct Bioinform, 2006, 64: 156-166??
[17]  31 Nakajima H, Kunioka Y, Nakano K, et al. Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. Biochem Biophys Res Commun, 1997, 234: 178-182??
[18]  33 Guo Z, Yin Y H. Casimir effect on adhesion interaction between myosin molecular motor and actin filament. Inter J Nanosyst, 2010, 3: 9-15
[19]  38 Uyeda T Q P, Abramson P D, Spudich J A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA, 1996, 93: 4459-4464??
[20]  39 Ishijima A, Kojima H, Funatsu T, et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell, 1998, 92: 161-171??
[21]  49 包景东, 卓益忠. 分子马达单向梯跳运动的偏压涨落模型. 科学通报, 1998, 43: 1493-1496
[22]  50 李晨璞, 韩英荣, 展永, 等. 利用偶极子模型研究肌球蛋白Ⅵ的定向运动. 科学通报, 2008, 53: 528-532
[23]  51 Spudich J A, Sivaramakrishnan S. Myosin VI: An innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol, 2010, 11: 128-137??
[24]  52 Sweeney H L, Houdusse A. Myosin VI rewrites the rules for myosin motors. Cell, 2010, 141: 573-582??
[25]  53 Montemagno C, Bachand G. Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology, 1999, 10: 225-231??
[26]  54 Van Delden RA, Ter Wiel M K J, Pollard M M. et al. Unidirectional molecular motor on a gold surface. Nature, 2005, 437: 1337-1340??
[27]  57 Qi W, Duan L, Wang K, et al. Motor protein CF0F1 reconstituted in lipid-coated hemoglobin microcapsules for ATP Synthesis. Adv Mater, 2008, 20: 601-605??
[28]  59 Chin L, Yue P, Feng J J, et al. Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship. Biophys J, 2006, 91: 3653-3663??
[29]  61 Shu Y G, Shi H L. Cooperative effects on the kinetics of ATP hydrolysis in collective molecular motors. Phys Rev E, 2004, 69: 021912??
[30]  64 Brugues J, Casademunt J. Self-organization and cooperativity of weakly coupled molecular motors under unequal loading. Phys Rev Lett, 2009, 102: 118104??
[31]  65 Campas O, Kafri Y, Zeldovich K B, et al. Collective dynamics of interacting molecular motors. Phys Rev Lett, 2006, 97: 038101??
[32]  66 殷跃红, 郭朝. 分子马达集体运行机制及肌小节动态力学模型. 中国科学: 技术科学, 2011, 41: 1533-1540
[33]  68 Stein R B, Bobet J, Owuztoreli M N, el al. The kinetics relating calcium and force in skeletal muscle. Biophys J, 1988, 54: 705-717??
[34]  69 郭朝, 殷跃红. 基于分子马达集体运行机制的骨骼肌收缩动态力学模型——基于分子马达运行机制的骨骼肌生物力学原理(I). 中国科学: 技术科学, 2012, 42: 672-679
[35]  77 殷跃红, 陈幸. 骨骼肌收缩的生物电化学变频调控原理——基于分子马达运行机制的骨骼肌生物力学原理(II). 中国科学: 技术科学, 2012, 42: 901-910
[36]  78 Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500-544
[37]  79 Luscher H R, Shiner J S. Simulation of action potential propagation in complex terminal arborizations. Biophys J, 1990, 58: 1389-1399??
[38]  80 Smith D O. Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. J Physiol, 1980, 301: 243-259
[39]  81 Rogers J M, McCulloch A D. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng, 1994, 41: 743-757??
[40]  82 Kandel E R, Schwartz J H, Jessell T M. Principles of Neural Science. 4th ed. New York: Elsevier, 2000
[41]  3 Huxley A F, Niedergerke R. Structural changes in muscle during contraction. Nature, 1954, 173: 971-973??
[42]  4 余志斌, 李全, 徐彭涛, 等译. 骨骼肌结构与功能. 西安: 第四军医大学出版社, 2010
[43]  6 Linke W A, Ivemeyer M, Mundel P, et al. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA, 1998, 95: 8052-8057??
[44]  7 Rayment I, Holden H M, Whittaker M. Structure of the actin-myosin complex and its implications for muscle contraction. Science, 1993, 261: 56-65
[45]  8 Rayment I, Rypniewski W R, Schmidt-Base K, et al. Three dimensional structure of myosin subfragment-1: A molecular motor. Science, 1993, 261: 50-58??
[46]  11 Fung Y C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993. 568
[47]  12 李永胜, 张全有, 陈维毅. 骨骼肌收缩的本构模型. 太原理工大学学报, 2005, 36: 760-764
[48]  13 Zajac F E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 1989, 17: 359-411
[49]  14 Huxley H E. The mechanism of muscular contraction. Science, 1969, 164: 1356-1366??
[50]  15 Huxley A F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem, 1957, 7: 255-318
[51]  17 Gordon A M, Huxley A F, Julian F J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol, 1966, 184: 170-192
[52]  21 Anderson F C, Pandy M G. Static and dynamic optimization solutions for gait are practically equivalent. J Biomech, 2001, 34: 153-161??
[53]  24 舒咬根, 欧阳钟灿. 生物分子马达. 物理, 2007, 36: 735-741
[54]  25 Yamakita Y, Iio T. Conformational change of skeletal muscle troponin. J Biochem, 1989, 105: 870-874
[55]  32 郭朝, 殷跃红. 肌球蛋白分子马达的多力场耦合机理分析. 科学通报, 2010, 55: 2675-2682
[56]  34 Yanagida S, Kitamura K, Tanaka H, et al. Single molecule analysis of the actomyosin motor. Curr Opin Cell Biol, 2000, 12: 20-25??
[57]  35 Huxley A F. Cross-bridge action: Present views, prospects, and unknowns. J Biomech, 2000, 33: 1189-1195??
[58]  36 Kaya M, Higuchi H. Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments. Science, 2010, 329: 686-689??
[59]  37 Sellers J R, Veigel C. Direct observation of the myosin-Va power stroke and its reversal. Nat struct Mol Biol, 2010, 17: 590-595??
[60]  40 Yanagida T, Iwaki M, Ishii Y. Single molecule measurements and molecular motors. Phil Trans R Soc B, 2008, 363: 2123-2134??
[61]  41 Li G H, Cui Q. Mechanochemical coupling in myosin: A theoretical analysis with molecular dynamics and combined QM/MM reaction path calculations. J Phys Chem B, 2004, 108: 3342-3357??
[62]  42 Yang Z, Zhao Y P. QM/MM and classical molecular dynamics simulation of His-tagged peptide immobilization on nickel surface. Mat Sci Eng A-Struct, 2006, 423: 84-91??
[63]  43 Yang Z, Zhao Y P. Adsorption of his-tagged peptide to Ni, Cu and Au (100) surfaces: Molecular dynamics simulation. Eng Anal Bound Elem, 2007, 31: 402-409
[64]  44 Feynman R P, Leighton R B, Sands M. The Feynman Lectures on Physics. Boston: Addison-Wesley Longman, 1970, Chap 46
[65]  45 Astumian R D. Thermodynamics and kinetics of a Brownian motor. Science, 1997, 276: 917-922??
[66]  46 Julicher F, Ajdari A, Prost J. Modeling molecular motors. Rev Mod Phys, 1997, 69: 1269-1281??
[67]  47 Esaki S, Ishii Y, Yanagida T. Model describing the biased Brownian movement of myosin. Proc Jpn Acad, 2003, 79: 9-14??
[68]  48 艾保全, 王先菊, 刘国涛, 等. 肌肉收缩的理论研究. 中国医学物理学杂志, 2003, 20: 107-109
[69]  55 Ren Q, Zhao Y P, Yuek J C, et al. Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors. Biomed Microdevices, 2006, 8: 201-208??
[70]  56 崔元波, 张英豪, 乐加昌, 等. 光驱动F0F1-ATP合酶复合物顺时针旋转的观察. 科学通报, 2004, 49: 1235-1237
[71]  58 Lan G, Sun S X. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation. Biophys J, 2005, 88: 4107-4117??
[72]  60 郭维生, 罗辽复. 肌球蛋白工作循环的一个新模型. 生物化学与生物物理进展, 2003, 30: 216-220
[73]  62 Vermeulen K C, Stienen G J M, Schmid C F, et al. Cooperative behavior of molecular motors. J Muscle Res Cell Mot, 2002, 23: 71-79??
[74]  63 Veigel C, Molloy J E. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol, 2003, 5: 980-986??
[75]  67 Alencar A M, Butler J P, Mijailovich S M. Thermodynamic origin of cooperativity in acto-myosin interactions: The coupling of short-range interactions with actin bending stiffness in an Ising-like model. Phys Rev E, 2009, 79: 041906??
[76]  70 Sanes J R, Lichtman J W. Development of the vertebrate neuromuscular junction. Ann Rev Neurosci, 1999, 22: 389-442??
[77]  71 Toyoshima C, Nakasako M, Nomura H, et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 ? resolution. Nature, 2000, 405: 647-655
[78]  72 Yin C C, D’Cruz L G, Lai F A. Ryanodine receptor arrays: Not just a pretty pattern? Cell, 2008, 18: 149-156
[79]  73 Stern M D, Pizzaro G, Rios E. Local control model of excitation-contraction coupling in skeletal muscle. J Gen Physiol, 1997, 110: 415-440??
[80]  74 Cannel M B, Allen D G. Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J, 1984, 45: 913-925??
[81]  75 Stuyvers B D, McCulloch A D, Guo J, et al. Effect of stimulation rate, sarcomere length and Ca2+ on force generation by mouse cardiac muscle. J Physiol, 2002, 544: 817-830
[82]  76 Edwards R H T, Hill D K, Jones D A. Fatigue of long duration in human skeletal muscle after exercise. J Physiol, 1977, 272: 769-778

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133