1 Parr R G, Yang W T. Density-Functional Theory of Atoms and Molecules. Oxford: Oxford University Publishing, 1989
[2]
3 Geerlings P, Proft F D, Langenaeker W. Density functional theory: A source of chemical concepts and a cost-effective methodology for their calculation. Adv Quantum Chem, 1999, 33: 303-328
[3]
4 Gazquez J L, Mendez F. The hard and soft acids and bases principle: An atoms in molecules viewpoint. J Phys Chem, 1994, 98: 4591-4593??
[4]
7 Garcia-Viloca M, Gao J, Karplus M, et al. How enzymes work: Analysis by modern rate theory and computer simulations. Science, 2004, 303: 186-195??
[5]
8 Senn H M, Thiel W. QM/MM studies of enzymes. Curr Opin Chem Biol, 2007, 11: 182-187??
[6]
10 Roy R K, Saha S. Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep Prog Chem, Sect C, 2010, 106: 118-162??
[7]
11 Roos G, Loverix S, Proft F D, et al. A computational and conceptual DFT study of the reactivity of anionic compounds: Implications for enzymatic catalysis. J Phys Chem A, 2003, 107: 6828-6836??
[8]
12 Roos G, Geerlings P, Messens J. Enzymatic catalysis: The emerging role of conceptual density functional theory. J Phys Chem B, 2009, 113: 13465-13475??
[9]
13 Kolmodin K, ?qvist J. The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Lett, 2001, 498: 208-213??
[10]
14 Alhambra C, Gao J. Hydrogen-bonding interactions in the active site of a low molecular weight protein-tyrosine phosphatase. J Comput Chem, 2000, 21: 1192-1203??
[11]
16 Messens J, Martins J C, Belle K V, et al. All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade. Proc Natl Acad Sci USA, 2002, 99: 8506-8511??
[12]
17 Asthagiri D, Dillet V, Liu T, et al. Density functional study of the mechanism of a tyrosine phosphatase: I. Intermediate formation. J Am Chem Soc, 2002, 124: 10225-10235??
[13]
19 Czyryca P G, Hengge A C. The mechanism of the phosphoryl transfer catalyzed by Yesinia protein-tyrosine phosphatase: A computational and isotope effect study. BBA-Protein Struct Mol Enzymol, 2001, 1547: 245-253??
[14]
21 Zhang Z Y. Protein-tyrosine phosphatases: Biological function, structural characteristics, and mechanism of catalysis. Crit Rev Biochem Mol Biol, 1998, 33: 1-52??
[15]
25 Yang Z Z, Wang C S. Atom-bond electronegativity equalization method.Ⅰ. Calculation of the charge distribution in large molecules. J Phys Chem A, 1997, 101: 6315-6321??
[16]
26 Yang Z Z, Shen E Z. A scheme for calculating atomic charge distribution in large molecules based on density functional theory and electronegativity equalization. Theochem-J Mol Struct, 1996, 312: 167-173
[17]
31 Zhao D X, Liu C, Wang F F, et al. Development of a polarizable force field using multiple fluctuating charges per atom. J Chem Theory Comput, 2010, 6: 795-804??
[18]
2 Geerlings P, Proft F D, Langenaeker W. Conceptual density functional theory. Chem Rev, 2003, 103: 1793-1873??
[19]
5 Zhao D X, Xu Z Z, Yang Z Z. Local HSAB rationalization of Diels-Alder reactions by means of ab initio and ABEEMσπ methods: Stereoselectivity and reaction rate. Int J Quant Chem, 2012, doi: 10.1002/qua.24173
9 Karplus M, Kuriyan J. Molecular dynamics and protein function. Proc Natl Acad Sci USA, 2005, 102: 6679-6685??
[22]
15 Kolmodin K, ?qvist J. Computational modeling of catalysis and binding in low-molecular-weight protein tyrosine phosphatase. Int J Quant Chem, 1999, 73: 147-159??
[23]
18 Zegers I, Martins J C, Willem R, et al. All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade. Nat Struct Biol, 2001, 8: 843-847??
[24]
20 Hansson T, Nordlund P, ?qvist J. Energetics of nucleophile activation in a protein tyrosine phosphatase. J Mol Biol, 1997, 265: 118-127??
[25]
22 Bennett M S, Guan Z, Laurberg M, et al. Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci USA, 2001, 98: 13577-13582??
[26]
23 Damoun S, Woude V, Mendez F, et al. Local softness as a regioselectivity indicator in [4+ cycloaddition reaction. J Phys Chem A, 1997, 101: 886-893??
[27]
24 Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03. Version 6.0. Pittsburgh PA: Gaussian Inc., 2003
[28]
27 Wang C S, Yang Z Z. Atom-bond electronegativity equalization method. II. lone-pair electron model. J Chem Phys, 1999, 110: 6189??
[29]
28 Cong Y, Yang Z Z. General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide. Chem Phys Lett, 2000, 316: 324-329??
[30]
29 Liu C, Zhao D X, Yang Z Z. Direct evaluation of individual hydrogen bond energy in situ in intra- and intermolecular multiple hydrogen bonds system. J Comput Chem, 2011, 33: 379-390
[31]
30 Liu C, Zhao D X, Yang Z Z. ABEEMσπ fluctuating charge force field applied to alanine dipeptide and alanine dipeptide-water systems. J Theor Comput Chem, 2010, 9: 77-97??
[32]
32 Wang F F, Zhao D X, Gong L D. Ab initio and ABEEM/MM fluctuating charge model studies of dimethyl phosphate anion in a microhydrated environment. Theor Chem Acc, 2009, 124: 139-150??
[33]
33 Messens J, Martins J C, Brosens E, et al. Kinetics and active site dynamics of staphylococcus aureus arsenate reductase. J Biol Inorg Chem, 2002, 7: 145-156