全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

不同成熟度烃源岩的催化加氢热解与索氏抽提在生物标志物特征上的对比

, PP. 3067-3077

Keywords: 催化加氢热解,热成熟作用,四川盆地,大隆组

Full-Text   Cite this paper   Add to My Lib

Abstract:

选取四川盆地内处于生油窗范围内的广元长江沟剖面和已处于高演化阶段的旺苍鹿渡剖面的大隆组烃源岩作为研究对象,进行了烃源岩索氏抽提和干酪根催化加氢热解实验,将两种方法获取的生物标志物特征进行了对比,以探讨催化加氢热解产物同抽提物中生物标志物特征的异同,以及热成熟作用对键合态生物标志物的影响程度.研究结果表明,高-过成熟烃源岩以及存在不同岩性夹层的烃源岩干酪根中的键合态生物标志物都很难同其抽提物中的游离态生物标志物进行直接对比,而采用干酪根催化加氢热解技术可以较大程度上帮助消除热成熟作用(在Ro≤2.4%的范围内)的影响以及烃源岩夹层间运移烃的干扰,所提取的键合态生物标志物能够有效地应用于高-过成熟烃源岩的分子地球化学表征及油源对比研究.

References

[1]  2 Eglinton G, Calvin M. Chemical fossils. Sci Am, 1967, 261: 32-43
[2]  3 Peters K E, Walters C C, Moldowan J M. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History. 2nd ed. New York: Cambridge University Press, 2005. 1-699
[3]  5 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二): 南方四套区域性海相烃源岩的地球化学特征. 海相油气地质, 2009, 14: 1-15
[4]  6 赵孟军, 张水昌, 赵陵, 等. 南盘江盆地古油藏沥青地球化学特征及成因. 地质学报, 2006, 80: 893-902
[5]  7 赵孟军, 张水昌, 赵陵, 等. 南盘江盆地古油藏沥青、天然气的地球化学特征及成因. 中国科学D辑: 地球科学, 2007, 37: 167-177
[6]  8 孙永革, Meredith W, Snape C E, 等. 加氢催化裂解技术用于高演化烃源岩有机质表征研究. 石油与天然气地质, 2008, 29: 276-282
[7]  9 Love G D, Snape C E, Carr A D, et al. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org Geochem, 1995, 23: 981-986??
[8]  12 Murray I P, Love G D, Snape C E, et al. Comparison of covalently bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suit of Kimmeridge clays. Org Geochem, 1998, 29: 1487-1505??
[9]  13 Bishop A N, Love G D, McAulay A D, et al. Release of kerogen-bound hopanoids by hydropyrolysis. Org Geochem, 1998, 29: 989-1001??
[10]  14 周建伟, 李术元, 岳长涛, 等. 高演化沉积有机质中共价键结合的生物标志物的提取及分析. 石油学报, 2006, 22: 83-88
[11]  15 Zhou J W, Li S Y, Zhong N N. Study on hydropyrolysis of sedimentary organic matter and geochemical information of hydropyrolysates. J Fuel Chem Tech, 2007, 35: 648-654??
[12]  16 Bowden S R, Farrimond P, Snape C E, et al. Compositional differences in biomarker constituents of the hydrocarbon, resin, asphaltene and kerogen fractions: An example from the Jet Rock (Yorkshire, UK). Org Geochem, 2006, 37: 369-383??
[13]  19 王一刚, 文应初, 洪海涛, 等. 四川盆地开江-梁平海槽内发现大隆组. 天然气工业, 2006, 26: 32-36
[14]  20 王一刚, 文应初, 洪海涛, 等. 四川盆地及邻区上二叠统-下三叠统海槽的深水沉积特征. 石油与天然气地质, 2006, 27: 702-714
[15]  21 腾格尔, 秦建中, 付小东, 等. 川西北地区海相油气成藏物质基础——优质烃源岩. 石油实验地质, 2008, 30: 478-483
[16]  22 李红敬, 解习农, 林正良, 等. 四川盆地广元地区大隆组有机质富集规律. 地质科技情报, 2009, 28: 98-103
[17]  23 马永生, 牟传龙, 谭钦银, 等. 关于开江-梁平海槽的认识. 石油与天然气地质, 2006, 27: 326-331
[18]  24 蔡雄飞, 张志峰, 彭兴芳, 等. 鄂湘黔桂地区大隆组的沉积特征及烃源岩的关系. 地球科学, 2007, 32: 774-780
[19]  27 张永东, 蒋爱珠, 孙永革, 等. 柴达木盆地西部新生代盐湖相烃源岩中脱羟基维生素E类化合物碳同位素组成及其指示意义. 科学通报, 2012, 57: 560-570
[20]  31 Seifert W K, Moldowan J M. Use of biological markers in petroleum exploration. In: Johns R B, ed. Methods in Geochemistry and Geophysics. New York: Elsevier, 1986. 261-290
[21]  37 黄第藩, 张大江, 李晋超. 论4-甲基甾烷和孕甾烷的成因. 石油勘探与开发, 1989, 3: 8-15
[22]  39 Behar F, Pelet R, Roucache J. Geochemistry of asphaltenes. Org Geochem, 1984, 6: 587-595??
[23]  40 Cassani F, Eglinton G. Organic geochemistry of Venezuelan extra-heavy oils: 1. Pyrolysis of asphaltenes: A technique for the correlation and maturity evaluation of crude oils. Chem Geol, 1986, 56: 167-183??
[24]  41 Russell R A, Snape C E, Meridith W, et al. The potential of bound biomarker profiles released via catalytic hydropyrolysis to reconstruct basin charging history for oils. Org Geochem, 2004, 35: 1441-1459??
[25]  42 Mello M R, Telnaes N, Gaglianone P C, et al. Organic geochemical characterization of depositional paleoenvironments of source rocks and oils in Brazilian marginal basins. Org Geochem, 1988, 13: 31-45??
[26]  46 Kolaczkowska E, Slougui N E, Watt D S, et al. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β- hopane isomers using molecular mechanics calculations. Org Geochem, 1990, 16: 1033-1038
[27]  47 Moldowan J M, Dundararaman P, Schoell M. Sensitivity of biomarker properties to depositional enviroment and/or source input in the Lower Toarcian of S. W. Germany. Org Geochem, 1986, 10: 915-941??
[28]  51 Hofmann I C, Hutchison J, Robson J N, et al. Evidence for sulphide links in a crude oil asphaltene and kerogens from reductive cleavage by lithium in ethylamine. Org Geochem, 1992, 19: 371-387??
[29]  52 Pan C C, Peng D H, Zhang M, et al. Distribution and isomerization of C31-C35 homohopanes and C29 steranes in Oligocene saline lacustrine sediments from Qaidam Basin, Northwest China. Org Geochem, 2008, 39: 646-657??
[30]  53 Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org Geochem, 1991, 17: 47-61??
[31]  1 Eglinton G, Scott P M, Belsky T, et al. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science, 1964, 145: 263-264??
[32]  4 梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题. 石油勘探与开发, 2005, 32: 8-14
[33]  10 Love G D, Snape C E, Carr A D, et al. Changes in molecular biomarker and bulk carbon skeletal parameters of vitrinite concentrates as a function of rank. Energ Fuel, 1996, 10: 149-157??
[34]  11 Love G D, McAulay A, Snape C E, et al. Effect of process variables in catalytic hydropyrolysis on the release of covalently bound aliphatic hydrocarbons from sedimentary organic matter. Energ Fuel, 1997, 11: 522-531??
[35]  17 Lockhart R S, Meredit W, Love G D, et al. Release of bound aliphatic biomarkers via hydropyrolysis from Type II kerogen at high maturity. Org Geochem, 2008, 39: 1119-1124??
[36]  18 Liao Y H, Fang Y X, Wu L L, et al. The characteristics of the biomarkers and δ13C of n-alkanes released from thermally altered solid bitumens at various maturities by catalytic hydropyrolysis. Org Geochem, 2012, 46: 56-65??
[37]  25 冯增昭. 沉积岩石学. 北京: 石油工业出版社, 1994. 1-326
[38]  26 Sweeney J J, Burnham A K. Evaluation of a simple method of vitrinite reflectance based on chemical kinetics. AAPG Bull, 1990, 74: 1559-1570
[39]  28 Liao Y H, Geng A S, Huang H P. The influence of biodegradation on resins and asphaltenes in the Liaohe Basin. Org Geochem, 2009, 40: 312-320??
[40]  29 Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol, 1987, 41: 301-333??
[41]  30 Seifert W K, Moldowan J M, Demaison G J. Source correlation of biodegraded oils. Org Geochem, 1984, 6: 633-643??
[42]  32 Peters K E, Moldowan J M, Driscole A R, et al. Origin of Beatrice oil by co-sourcing from Devonian and Middle Jurassic source rocks, Inner Moray Firth, UK, AAPG Bull, 1989, 73: 454-471
[43]  33 Peters K E, Snedden J W, Sulaeman A, et al. A new geochemical-stratigraphic model for the Mahakam Delta and Makassar slope, Kalimantan, Indonesia. AAPG Bull, 2000, 84: 12-44
[44]  34 Lu S T, Ruth E, Kaplan I R. Pyrolysis of kerogens in the absence and presence of montmorillonite -I. The genertation, degradation and isomerization of steranes and triterpanes at 200 and 300°C. Org Geochem, 1989, 14: 491-499
[45]  35 Love G D, Snape C E, Fallick A E. Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a Type I oil shale. Org Geochem, 1998, 28: 797-811??
[46]  36 de Leeuw J W, Bass M. Early diagenesis of steroids. In: Johns R B, ed. Biological Markers in the Sedimentary Record. Amsterdam: Elsevier, 1986. 102-127
[47]  38 Rubinstein I, Spyckerelle C, Strausz O P. Pyrolysis of asphaltenes: A source of geochemical information. Geochim Cosmochim Acta, 1979, 43: 1-6??
[48]  43 Seifert W K, Moldowan J M. Applications of sterances, terpanes, and monoaromatics to the maturation, migration, and source of crude oils. Geochim Cosmochim Acta, 1978, 42: 77-95??
[49]  44 Seifert W K, Moldowan J M. The effect of biodegradation on steranes and terpanes in crude oils. Geochim Cosmochim Acta, 1979, 43: 111-126??
[50]  45 Goodarzi F, Brooks P W, Embry A F. Regional maturity as determined by organic Petrography and geochemistry of the Schei Point Group (Triassic) in the western Sverdrup Basin, Canadian Arctic Archipelago. Mar Petrol Geol, 1989, 6: 290-302??
[51]  48 Meredith W, Snape C E, Carr A D, et al. The occurrence of unusual hopenes in hydropyrolysates generated from severely biodegraded oil seep asphaltenes. Org Geochem, 2008, 39: 1243-1248??
[52]  49 Mycke B, Michaelis W. Molecular fossils from chemical degradation of macromolecular organic matter. Org Geochem, 1986, 10: 847-858??
[53]  50 Michaelis W, Richnow H H, Jenisch A, et al. Structural inferences from organic geochemical coal studies. In: Ittekkot V, Kempe S, Michaelis W, et al., eds. Facets of Modern Biogeochemistry. Heidelberg: Springer Verlag, 1989. 389-402
[54]  54 Larcher A V, Alexander R, Kagi R I. Differences in reactivities of sedimentary hopane diastereomers when heated in the presence of clays. Org Geochem, 1988, 13: 665-669??
[55]  55 Dzou L I P, Noble R A, Senftle J T. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Org Geochem, 1995, 23: 681-697??
[56]  56 Farrimond P, Taylor A, Telnet N. Biomarker maturity parameters: The role of generation and thermal degradation. Org Geochem, 1998, 29: 1181-1197??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133