2 Eglinton G, Calvin M. Chemical fossils. Sci Am, 1967, 261: 32-43
[2]
3 Peters K E, Walters C C, Moldowan J M. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History. 2nd ed. New York: Cambridge University Press, 2005. 1-699
8 孙永革, Meredith W, Snape C E, 等. 加氢催化裂解技术用于高演化烃源岩有机质表征研究. 石油与天然气地质, 2008, 29: 276-282
[7]
9 Love G D, Snape C E, Carr A D, et al. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org Geochem, 1995, 23: 981-986??
[8]
12 Murray I P, Love G D, Snape C E, et al. Comparison of covalently bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suit of Kimmeridge clays. Org Geochem, 1998, 29: 1487-1505??
[9]
13 Bishop A N, Love G D, McAulay A D, et al. Release of kerogen-bound hopanoids by hydropyrolysis. Org Geochem, 1998, 29: 989-1001??
15 Zhou J W, Li S Y, Zhong N N. Study on hydropyrolysis of sedimentary organic matter and geochemical information of hydropyrolysates. J Fuel Chem Tech, 2007, 35: 648-654??
[12]
16 Bowden S R, Farrimond P, Snape C E, et al. Compositional differences in biomarker constituents of the hydrocarbon, resin, asphaltene and kerogen fractions: An example from the Jet Rock (Yorkshire, UK). Org Geochem, 2006, 37: 369-383??
31 Seifert W K, Moldowan J M. Use of biological markers in petroleum exploration. In: Johns R B, ed. Methods in Geochemistry and Geophysics. New York: Elsevier, 1986. 261-290
39 Behar F, Pelet R, Roucache J. Geochemistry of asphaltenes. Org Geochem, 1984, 6: 587-595??
[23]
40 Cassani F, Eglinton G. Organic geochemistry of Venezuelan extra-heavy oils: 1. Pyrolysis of asphaltenes: A technique for the correlation and maturity evaluation of crude oils. Chem Geol, 1986, 56: 167-183??
[24]
41 Russell R A, Snape C E, Meridith W, et al. The potential of bound biomarker profiles released via catalytic hydropyrolysis to reconstruct basin charging history for oils. Org Geochem, 2004, 35: 1441-1459??
[25]
42 Mello M R, Telnaes N, Gaglianone P C, et al. Organic geochemical characterization of depositional paleoenvironments of source rocks and oils in Brazilian marginal basins. Org Geochem, 1988, 13: 31-45??
[26]
46 Kolaczkowska E, Slougui N E, Watt D S, et al. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β- hopane isomers using molecular mechanics calculations. Org Geochem, 1990, 16: 1033-1038
[27]
47 Moldowan J M, Dundararaman P, Schoell M. Sensitivity of biomarker properties to depositional enviroment and/or source input in the Lower Toarcian of S. W. Germany. Org Geochem, 1986, 10: 915-941??
[28]
51 Hofmann I C, Hutchison J, Robson J N, et al. Evidence for sulphide links in a crude oil asphaltene and kerogens from reductive cleavage by lithium in ethylamine. Org Geochem, 1992, 19: 371-387??
[29]
52 Pan C C, Peng D H, Zhang M, et al. Distribution and isomerization of C31-C35 homohopanes and C29 steranes in Oligocene saline lacustrine sediments from Qaidam Basin, Northwest China. Org Geochem, 2008, 39: 646-657??
[30]
53 Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org Geochem, 1991, 17: 47-61??
[31]
1 Eglinton G, Scott P M, Belsky T, et al. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science, 1964, 145: 263-264??
10 Love G D, Snape C E, Carr A D, et al. Changes in molecular biomarker and bulk carbon skeletal parameters of vitrinite concentrates as a function of rank. Energ Fuel, 1996, 10: 149-157??
[34]
11 Love G D, McAulay A, Snape C E, et al. Effect of process variables in catalytic hydropyrolysis on the release of covalently bound aliphatic hydrocarbons from sedimentary organic matter. Energ Fuel, 1997, 11: 522-531??
[35]
17 Lockhart R S, Meredit W, Love G D, et al. Release of bound aliphatic biomarkers via hydropyrolysis from Type II kerogen at high maturity. Org Geochem, 2008, 39: 1119-1124??
[36]
18 Liao Y H, Fang Y X, Wu L L, et al. The characteristics of the biomarkers and δ13C of n-alkanes released from thermally altered solid bitumens at various maturities by catalytic hydropyrolysis. Org Geochem, 2012, 46: 56-65??
[37]
25 冯增昭. 沉积岩石学. 北京: 石油工业出版社, 1994. 1-326
[38]
26 Sweeney J J, Burnham A K. Evaluation of a simple method of vitrinite reflectance based on chemical kinetics. AAPG Bull, 1990, 74: 1559-1570
[39]
28 Liao Y H, Geng A S, Huang H P. The influence of biodegradation on resins and asphaltenes in the Liaohe Basin. Org Geochem, 2009, 40: 312-320??
[40]
29 Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol, 1987, 41: 301-333??
[41]
30 Seifert W K, Moldowan J M, Demaison G J. Source correlation of biodegraded oils. Org Geochem, 1984, 6: 633-643??
[42]
32 Peters K E, Moldowan J M, Driscole A R, et al. Origin of Beatrice oil by co-sourcing from Devonian and Middle Jurassic source rocks, Inner Moray Firth, UK, AAPG Bull, 1989, 73: 454-471
[43]
33 Peters K E, Snedden J W, Sulaeman A, et al. A new geochemical-stratigraphic model for the Mahakam Delta and Makassar slope, Kalimantan, Indonesia. AAPG Bull, 2000, 84: 12-44
[44]
34 Lu S T, Ruth E, Kaplan I R. Pyrolysis of kerogens in the absence and presence of montmorillonite -I. The genertation, degradation and isomerization of steranes and triterpanes at 200 and 300°C. Org Geochem, 1989, 14: 491-499
[45]
35 Love G D, Snape C E, Fallick A E. Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a Type I oil shale. Org Geochem, 1998, 28: 797-811??
[46]
36 de Leeuw J W, Bass M. Early diagenesis of steroids. In: Johns R B, ed. Biological Markers in the Sedimentary Record. Amsterdam: Elsevier, 1986. 102-127
[47]
38 Rubinstein I, Spyckerelle C, Strausz O P. Pyrolysis of asphaltenes: A source of geochemical information. Geochim Cosmochim Acta, 1979, 43: 1-6??
[48]
43 Seifert W K, Moldowan J M. Applications of sterances, terpanes, and monoaromatics to the maturation, migration, and source of crude oils. Geochim Cosmochim Acta, 1978, 42: 77-95??
[49]
44 Seifert W K, Moldowan J M. The effect of biodegradation on steranes and terpanes in crude oils. Geochim Cosmochim Acta, 1979, 43: 111-126??
[50]
45 Goodarzi F, Brooks P W, Embry A F. Regional maturity as determined by organic Petrography and geochemistry of the Schei Point Group (Triassic) in the western Sverdrup Basin, Canadian Arctic Archipelago. Mar Petrol Geol, 1989, 6: 290-302??
[51]
48 Meredith W, Snape C E, Carr A D, et al. The occurrence of unusual hopenes in hydropyrolysates generated from severely biodegraded oil seep asphaltenes. Org Geochem, 2008, 39: 1243-1248??
[52]
49 Mycke B, Michaelis W. Molecular fossils from chemical degradation of macromolecular organic matter. Org Geochem, 1986, 10: 847-858??
[53]
50 Michaelis W, Richnow H H, Jenisch A, et al. Structural inferences from organic geochemical coal studies. In: Ittekkot V, Kempe S, Michaelis W, et al., eds. Facets of Modern Biogeochemistry. Heidelberg: Springer Verlag, 1989. 389-402
[54]
54 Larcher A V, Alexander R, Kagi R I. Differences in reactivities of sedimentary hopane diastereomers when heated in the presence of clays. Org Geochem, 1988, 13: 665-669??
[55]
55 Dzou L I P, Noble R A, Senftle J T. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Org Geochem, 1995, 23: 681-697??
[56]
56 Farrimond P, Taylor A, Telnet N. Biomarker maturity parameters: The role of generation and thermal degradation. Org Geochem, 1998, 29: 1181-1197??