全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

蓝田生物群:一个认识多细胞生物起源和早期演化的新窗口

, PP. 3219-3227

Keywords: 蓝田生物群,埃迪卡拉纪,多细胞生物,起源与早期演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

蓝田生物群位于安徽省休宁县蓝田镇,保存在埃迪卡拉纪早期蓝田组的黑色页岩中,是已知最古老的复杂宏体生物群,既包含了扇状、丛状生长的海藻,也有具触手和类似肠道特征、形态可与现代腔肠动物相比较的后生动物.这一特殊埋藏的生物群为多细胞生物的起源和早期演化带来了新的启示微体真核生物在新元古代大冰期结束后迅速演化出宏体形态,它们底栖固着生活在较深水的安静环境中.也许,早期多细胞生物形态复杂化和生物多样性的产生与有性繁殖方式和世代交替现象的出现紧密相关.该时期海洋水体复杂多变的氧化-还原条件,很可能是蓝田生物群繁盛和特殊埋藏的重要原因.

References

[1]  1 Shu D. Cambrian explosion: Birth of tree of animals. Gondwana Res, 2008, 14: 219-240??
[2]  3 钱逸. 中国小壳化石分类学与生物地层学. 北京: 科学出版社, 1999. 27-31
[3]  4 Glaessner M F. The dawn of animal life: A biohistorical study. Cambridge, United Kingdom: Cambridge University Press, 1984. 1-244
[4]  7 Fedonkin M A. Systematic description of Vendian Metazoa. In: Sokolov B S, Iwanowski A B, eds. The Vendian System, Vol. 1: Paleontology. Heidelberg: Springer-Verlag, 1990. 71-120
[5]  8 Narbonne G M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci, 2005, 33: 421-442??
[6]  9 Xiao S, Laflamme M. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol, 2009,24: 31-40??
[7]  18 Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 2007, 315: 92-95??
[8]  20 Xiao S, Knoll A H, Yuan X, et al. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Bot, 2004, 91: 214-227??
[9]  21 Xiao S, Yuan X, Knoll A H. Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci USA, 2000, 97: 13684-13689
[10]  22 Xiao S, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391: 553-558??
[11]  23 Chen J, Bottjer D J, Li G, et al. Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng’an, Guizhou, China. Proc Natl Acad Sci USA, 2009, 106: 19056-19060??
[12]  24 Chen J, Bottjer D J, Oliveri P, et al. Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian. Science, 2004, 305: 218-222??
[13]  25 Zhang Y, Yin L, Xiao S, et al. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Paleontol Soc Mem, 1998, 50: 1-52
[14]  26 Zhou C, Yuan X, Xiao S. Phosphatized biotas from the Neoproterozoic Doushantuo Formation on the Yangtze Platform. Chin Sci Bull, 2002, 47: 1918-1924??
[15]  27 Zhou C, Xie G, McFadden K, et al. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geol J, 2007, 42: 229-262??
[16]  28 Yin C, Bengtson S, Yue Z. Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of south China. Acta Palaeontol Pol, 2004, 49: 1-12
[17]  33 袁训来, 肖书海, 尹磊明, 等. 陡山沱期生物群: 早期动物辐射前夕的生命. 合肥: 中国科技大学出版社, 2002. 1-171
[18]  34 Schiffbauer J D, Xiao S, Sharma K S, et al. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 2012, 40: 223-226??
[19]  35 McFadden K A, Huang J, Chu X, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 2008, 105: 3197-3202??
[20]  37 Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 2008, 452: 456-459??
[21]  38 Shen Y, Zhang T, Hoffman P F. On the coevolution of Ediacaran oceans and animals. Proc Natl Acad Sci USA, 2008, 105: 7376-7381??
[22]  39 Zhao Y Y, Zheng Y F. Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China. Chem Geol, 2010, 271: 86-100??
[23]  40 Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean. Science, 2010, 328: 80-83??
[24]  43 陈孟莪, 鲁刚毅, 肖宗正. 皖南上震旦统蓝田组的宏体藻类化石——蓝田植物群的初步研究. 中国科学院地质研究所论文集, 1994. 252-267
[25]  44 Steiner M. Die neoproterozoischen Megaalgen Südchinas. Berl Geowiss Abh (E), 1994, 15: 1-146
[26]  46 唐烽, 尹崇玉, 高林志. 安徽休宁陡山沱期后生植物化石的新认识. 地质学报, 1997, 71: 289-296
[27]  49 Narbonne G M. Evolutionary biology: When life got big. Nature, 2011, 470: 339-340??
[28]  51 Moore E M. Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis. Geology, 1991, 19: 425-428??
[29]  53 Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 1991, 252: 1409-1412
[30]  54 Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth. Science, 1998, 281: 1342-1346??
[31]  55 Javaux E J, Knoll A H, Walter M R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature, 2001, 412: 66-69??
[32]  56 Gill B C, Lyons T W, Young S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 2011, 469: 80-83??
[33]  59 Porter S M. The fossil record of early eukaryotic diversification. In: Lipps J H, Waggoner B, eds. The Paleontological Society Papers 10: Neoproterozoic-Cambrian Biological Revolutions. New Haven: Paleontological Society, 2004. 35-50
[34]  61 Butterfield N J, Knoll A H, Swett K. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils Strata, 1994, 34: 1-84
[35]  62 Porter S M, Knoll A H. Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 2000, 26: 360-385??
[36]  63 Maloof A C, Porter S M, Moore J L, et al. The earliest Cambrian record of animals and ocean geochemical change. Geol Soc Amer Bull, 2010, 122: 1731-1774??
[37]  65 Erwin D H, Laflamme M, Tweedt S M, et al. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 2011, 334: 1091-1097??
[38]  66 Doolittle R F, Feng D F, Tsang S, et al. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science, 1996, 271: 470-477??
[39]  67 Wray G A, Levinton J S, Shapiro L H. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 1996, 274: 568-573??
[40]  70 Haeckel E. The gastrea theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. Quart J Micr Sci, 1874, 14: 142-165
[41]  72 Erwin D H, Davidson E H. The last common bilaterian ancestor. Development, 2002, 129: 3021-3032
[42]  73 Jensen S, Droser M L, Gehling J G. A critical look at the Ediacaran trace fossil record. In: Xiao S, Kaufman A J, eds. Neoproterozoic Geobiology. Dordrecht, the Netherland: Kluwer Academic Publishers, 2006. 115-157
[43]  74 Jensen S. The Proterozoic and earliest Cambrian trace fossil record: Patterns, problems and perspectives. Integr Comp Biol, 2003, 43: 219-228??
[44]  75 Seilacher A, Buatois L A, Gabriela Mangano M. Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeogr Palaeoclimat Palaeoecol, 2005, 227: 323-356??
[45]  76 Gehling J G, Narbonne G M, Anderson M M. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 2000, 43: 427-456??
[46]  78 Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology. Science, 1999, 284: 2129-2137??
[47]  82 尹磊明, 周传明, 袁训来. 湖北宜昌埃迪卡拉系陡山沱组天柱山卵囊胞——Tianzhushania的新认识. 古生物学报, 2008, 47: 129-140
[48]  84 Cohen P A, Knoll A H, Kodner R B. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA, 2009, 106: 6519-6524??
[49]  85 Xiao S, Hagadorn J W, Zhou C, et al. Rare helical spheroidal fossils from the Doushantuo Lagerst?tte: Ediacaran animal embryos come of age? Geology, 2007, 35: 115-118
[50]  87 Butterfield N J. Terminal developments in Ediacaran Embryology. Science, 2011, 334: 1655-1656??
[51]  89 肖书海, 诺尔. 是胚胎还是藻类——兼答薛耀松、周传明、唐无福先生. 微体古生物学报, 1999, 16: 313-323
[52]  90 Droser M L, Gehling J G. Synchronous aggregate growth in an abundant new ediacaran tubular organism. Science, 2008, 319: 1660-1662??
[53]  93 Pecoits E, Konhauser K O, Aubet N R, et al. Bilaterian burrows and grazing behavior at >585 million years ago. Science, 2012, 336: 1693-1696??
[54]  2 侯先光, 杨·伯格斯琼, 王海峰, 等. 澄江动物群——5.3亿年前的海洋动物. 昆明: 云南科技出版社, 1999. 40-49
[55]  5 Sun W. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Res, 1986, 31: 361-375??
[56]  6 Grotzinger J P, Bowring S A, Saylor B Z, et al. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 1995, 270: 598-604??
[57]  10 McMenamin M A S. The garden of Ediacara. Palaios, 1986, 1: 178-182??
[58]  11 Seilacher A. Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution. J Geol Soc Lond, 1992, 149: 607-613??
[59]  12 Seilacher A. Vendozoa: Organismic construction in the Precambrian biosphere. Lethaia, 1989, 22: 229-239??
[60]  13 Retallack G J. Were the Ediacaran fossils lichens? Paleobiology, 1994, 20: 523-544
[61]  14 Peterson K J, Waggoner B, Hagadorn J W. A fungal analog for Newfoundland Ediacaran fossils? Integ Comp Biol, 2003, 43: 127-136
[62]  15 Zhuravlev A Y. Were Ediacaran Vendobionta multicellulars? N Jb Geol Pal?ont Abh, 1993, 190: 299-314
[63]  16 Conway Morris S. The fossil record and the early evolution of the Metazoa. Nature, 1993, 361: 219-225??
[64]  17 Fedonkin M A, Waggoner B M. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 1997, 388: 868-871??
[65]  19 Zhang Y, Yuan X. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia, 1992, 25: 1-18??
[66]  29 Xiao S, Zhou C, Yuan X. Undressing and redressing Ediacaran embryos. Nature, 2007, 446: E9-E11??
[67]  30 Xiao S. Life on Earth: Precambrian Eukaryote fossils. In: Selley R C, Cocks R, Plimer I R, eds. Encyclopedia of Geology. Amsterdam: Elsevier, 2004. 354-363
[68]  31 Huldtgren T, Cunningham J A, Yin C, et al. Fossilized nuclei and germination structures identify Ediacaran “animal Embryos” as encysting protists. Science, 2011, 334: 1696-1699??
[69]  32 Xiao S, Knoll A H, Schiffbauer J D, et al. Comment on “Fossilized nuclei and germination structures identify Ediacaran ‘animal embryos’ as encysting protists”. Science, 2012, 335: 1169
[70]  36 Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 2008, 321: 949-952??
[71]  41 邢裕盛, 高振家, 刘桂芝, 等. 中国的上前寒武纪. 北京: 地质出版社, 1989. 1-150
[72]  42 毕治国, 王贤方, 朱鸿, 等. 皖南震旦系. 见: 地质古生物论文集. 北京: 地质出版社, 1988. 27-60
[73]  45 阎永奎, 蒋传仁, 张世恩, 等. 浙赣皖南地区震旦系研究. 中国地质科学院南京地质矿产研究所所刊, 1992, 20(增刊): 44-49
[74]  47 Yuan X, Li J, Cao R. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 1999, 32: 143-155
[75]  48 Yuan X, Xiao S, Li J, et al. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian Formation in Anhui, South China. Precambrian Res, 2001, 107: 251-261
[76]  50 Yuan X, Chen Z, Xiao S, et al. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 2011, 470: 390-393??
[77]  52 Dalziel I W D. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology, 1991, 19: 598-601??
[78]  57 Dahl T W, Hammarlund E U, Anbar A D, et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci USA, 2010, 107: 17911-17915??
[79]  58 Peng Y, Bao H, Yuan X. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res, 2009, 168: 223-232??
[80]  60 Butterfield N J, Knoll A H, Swett K. A bangiophyte red alga from the Proterozoic of Arctic Canada. Science, 1990, 250: 104-107??
[81]  64 Brain C K B, Prave A R, Hoffmann K-H, et al. The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci, 2012, 108: 1-8
[82]  68 Ayala F J, Rzhetsky A, Ayala F J. Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates. Proc Natl Acad Sci USA, 1998, 95: 606-611??
[83]  69 Lee M S Y. Molecular clock calibrations and metazoan divergence dates. J Mol Evol, 1999, 49: 385-391??
[84]  71 Davidson E H, Peterson K J, Cameron R A. Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science, 1995, 270: 1319-1325??
[85]  77 Xiao S, Yuan X, Steiner M, et al. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. J Paleont, 2002, 76: 345-374
[86]  79 Barfod G H, Albaréde F, Knoll A H, et al. Implications for the Neoproterozoic biological and climatic history from dating of the Doushantuo Phosphorites, S. China. EOS Trans. AGU Fall Meeting, 2002, 83: Abstract B71B-0737
[87]  80 Chen J, Bottjer David J, Davidson Eric H, et al. Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science, 2006, 312: 1644-1646??
[88]  81 Zhang Y. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 1989, 22: 113-132??
[89]  83 Yin L, Zhu M, Knoll A H, et al. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661-663??
[90]  86 Bailey J V, Joye S B, Kalanetra K M, et al. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 2007, 445: 198-201??
[91]  88 薛耀松, 周传明, 唐天福. “动物胚胎”——对瓮安地区陡山沱组微体化石的错误解释. 微体古生物学报, 1999, 16: 1-4
[92]  91 Butterfield N J. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoiceukaryotes and the Cambrian explosion. Paleobiology, 2004, 30: 231-252??
[93]  92 Liu A G, McLlroy D, Brasier M D. First evidence for locomotion in the Ediacara biota from the 565 Ma mistaken point Formation, Newfoundland. Geology, 2010, 38: 123-126??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133