全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

扬子板块北缘周庵超镁铁质岩体锆石U/Pb年龄和Hf-O同位素特征:对源区性质和Rodinia超大陆裂解时限的约束

, PP. 3283-3294

Keywords: 锆石Hf-O同位素,周庵超镁铁质岩体,扬子北缘,新元古代

Full-Text   Cite this paper   Add to My Lib

Abstract:

周庵超镁铁质岩体位于扬子板块北缘南秦岭地区,岩体主要由二辉橄榄岩组成.岩体中选出的锆石呈宽板状,具明显振荡环带和扇状环带,Th/U比值介于0.8~10.6之间,具有基性岩浆结晶锆石的特征.锆石206Pb/238U年龄平均值为637±4Ma(2σ,n=15),代表岩体的形成时代.锆石δ18O值介于5.2‰~7.0‰,平均值为5.8±0.4‰(1σ,n=33),与锆石的δ18O地幔值接近.锆石初始176Hf/177Hf(t)比值介于0.282410~0.282594之间,εHf(t)值在+1.3~+7.6之间,低于同期亏损地幔εHf(t)值(~+15),显示富集地幔特点,富集地幔源区的形成与俯冲洋壳物质交代岩石圈地幔有关.结合该地区新近发现的多个~635Ma镁铁-超镁铁质岩体以及同期大陆裂谷型耀岭河群双峰式火山岩,我们认为,周庵岩体是裂谷环境岩浆活动的产物,~635Ma的岩浆活动代表扬子板块北缘新元古代Rodinia超大陆裂解过程最晚期的产物.

References

[1]  2 Li Z X, Zhang L H, Powell C M. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23: 407-410
[2]  4 Zhou M F, Kennedy A K, Sun M, et al. Neo-proterozoic arc-related mafic intrusions in the northern margin of South China: Implications for accretion of Rodina. J Geol, 2002, 110: 611-618??
[3]  6 Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: Crust melting above a mantle plume at ca.825 Ma Precambrian Res, 2003, 122: 45-83??
[4]  7 Li X H, Li Z X, Zhou H W, et al. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: Petrogenesis and tectonic significance. Sci China Ser D-Earth Sci, 2003, 46(Suppl): 73-83
[5]  10 Zhao J H, Zhou M F. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China. J Geol, 2007, 115: 675-689??
[6]  11 Zhao J H, Zhou M F. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos, 2008, 104: 231-248??
[7]  13 Zhao J H, Zhou M F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 2009, 107: 152-168??
[8]  14 洪吉安, 马斌, 黄琦. 湖北枣阳大阜山镁铁/超镁铁杂岩体与金红石矿床成因. 地质科学, 2009, 44: 231-244
[9]  15 薛怀民, 马芳, 宋永勤. 扬子克拉通北缘随州-枣阳地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究. 岩石学报, 2011, 27: 1116-1130
[10]  16 闫海卿, 汤中立, 钱壮志, 等. 河南周庵铜镍矿锆石U-Pb年龄及地质意义. 兰州大学学报(自然科学版), 2011, 47: 23-32
[11]  17 周新民, 邹海波, 杨杰东, 等. 安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义. 科学通报, 1989, 34: 1243-1245
[12]  18 沈渭洲, 章邦同, 凌洪飞, 等. 浙江西裘细碧-角斑岩的Nd, Sr, O同位素地质研究. 地质学报, 1991, 65: 337-346
[13]  20 凌文黎, 高山, 欧阳建平, 等. 西乡群的时代与构造背景: 同位素年代学及地球化学制约. 中国科学D辑: 地球科学, 2002, 32: 101-112
[14]  21 Wang X C, Li X H, Li W X, et al. Ca. 825 Ma komatiitic basalts in South China: First evidence for >1500℃ mantle melts by a Rodinian mantle plume. Geology, 2007, 35: 1103-1106
[15]  22 Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet Sci Lett, 1999, 173: 171-181
[16]  23 Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 2007, 96: 127-150??
[17]  24 Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambrian Res, 2006, 145: 111-130??
[18]  25 Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Res, 2007, 159: 117-131??
[19]  26 Wang J, Li X H, Duan T Z, et al. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chin Sci Bull, 2003, 48: 1663-1669??
[20]  27 Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 2011, 39: 299-302??
[21]  28 Zhang Q R, Li X H, Feng L J, et al. A new age constraint on the onset of the Neoproterozoic glaciations in the Yangtze Platform, South China. J Geol, 2008, 116: 423-429??
[22]  29 王建明, 陈衍景, 李胜利, 等. 河南周庵铂族-铜镍矿床的地质特征及成因分析. 矿物岩石, 2006, 26: 31-37
[23]  30 Naldrett A J. Secular variation of magmatic sulfide deposits and their source magmas. Econ Geol, 2010, 105: 669-688??
[24]  31 Chen J F, Foland K A, Xing F M, et al. Magmatism along the southeastern margin of Yangtze block: Precambrian collision of the Yangtze and Cathaysia block of China. Geology, 1991, 19: 815-818??
[25]  32 Qiu Y M, Gao S, McNaughton N J, et al. First evidence of 3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 2000, 28: 11-14
[26]  33 Gao S, Ling W L, Qiu Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim Cosmochim Acta, 1999, 63: 2071-2088 ??
[27]  36 Zheng J P, Griffin W L, O’Reilly, et al. Widespread Archean basement beneath the Yangtze craton. Geology, 2006, 34: 417-420??
[28]  38 Zhou M F, Yan D P, Wang C L, et al. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth Planet Sci Lett, 2006, 248: 286-300??
[29]  39 Yan D P, Zhou M F, Song H L, et al. Origin and tectonic significance of a Mesozoic multi-layer over-thrust within the Yangtze Block(South China). Tectonophysics, 2003, 361: 239-254??
[30]  40 Zhou M F, Zhao T P, Malpas J, et al. Crustal-contamination komatiitic basalts in Southern China: Products of a Proterozoic mantle plume beneath the Yangtze Block. Precambrian Res, 2000, 103: 175-189??
[31]  41 Zhao J H, Zhou M F, Yan D P, et al. Zircon Lu-Hf isotope constrains on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China. Precambrian Res, 2008, 163: 189-209??
[32]  44 Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: Implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Res, 2003, 122: 111-140??
[33]  45 夏林圻, 夏祖春, 李向民, 等. 南秦岭东段耀岭河群, 郧西群, 武当山群火山岩和基性岩墙群岩石成因. 西北地质, 2008, 41: 1-29
[34]  46 凌文黎, 任邦方, 段瑞春, 等. 南秦岭武当山群, 耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 2007, 52: 1445-1456
[35]  47 张成立, 周鼎武, 金海龙, 等. 武当地块基性岩墙群及耀岭河群基性火山岩的Sr, Nd, Pb, O同位素研究. 岩石学报, 1999, 15: 430-437
[36]  48 张宗清, 张国伟, 傅国民, 等. 秦岭变质地层年龄及其构造意义. 中国科学D辑: 地球科学, 1996, 26: 216-222
[37]  52 Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: in situ zircon Hf-O isotopic constraints. Sci China Ser D-Earth Sci, 2009, 52: 1262-1278??
[38]  53 Li X H, Li W X, Li Q L, et al. Petrogenesis and tectonic significance of the -850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry. Lithos, 2010, 114: 1-15??
[39]  56 Sláma J, Ko?ler J, Condon D J, et al. Plésovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 2008, 249: 1-35??
[40]  58 Widenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand Newsl, 1995, 19: 1-23
[41]  59 Wu F Y, Yang Y H, Xie L W, et al. Hf isotope compositions of the standard zircon and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105-126??
[42]  60 Machado N, Simonetti A. U-Pb dating and Hf isotope composition of zircons by laser ablation-MC-ICP-MS. In: Sylvester P, ed. Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications. Newfoundland: Mineral Assoc Can, 2001. 121-146
[43]  64 Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotope Tonglu and Pingtan igneous complexes. Lithos, 2002, 61: 237-269??
[44]  65 Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 2003, 53: 27-62??
[45]  66 Valley J W, Kinny P D, Schulze D J, et al. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol, 1998, 133: 1-11??
[46]  69 闫全人, Andrew D H, 王宗起, 等. 扬子板块北缘碧口群火山岩的地球化学特征及其构造环境. 岩石矿物学杂志, 2004, 23: 1-11
[47]  71 黄萱, 吴利仁. 陕西地区岩浆岩Nd, Sr同位素特征及其与大地构造发展的联系. 岩石学报, 1990, 2: 1-11
[48]  72 张宗清, 张国伟, 唐索寒. 南秦岭变质地层同位素年代学. 北京: 地质出版社, 2002
[49]  73 Sun S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London: Geologic Society, 1989. 313-345
[50]  74 Plank T, Langumuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 1998, 145: 325-394??
[51]  75 Viccaro M, Nicotra E, Millar I L, et al. The magma source at Mount Etna Volcano: Perspectives from the Hf isotope composition of historic and recent lavas. Chem Geol, 2011, 281: 343-351??
[52]  76 Gill J B. Orogenic Andesites and Plate Tectonics. New York: Springer, 1981
[53]  80 Condon D, Zhu M Y, Bowring S A, et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95-98 ??
[54]  81 Hoffmann K H, Condon D J, Bowring S A, et al. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology, 2004, 32: 817-820??
[55]  82 Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth. Science, 1998, 281: 1342-1346??
[56]  83 Li Z X, Evans D A D. Late Neoproterozoic 40° interpolate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia. Geology, 2011, 39: 39-42??
[57]  84 Zhu W B, Zhang Z Y, Shu L S, et al. SHRIMP U-Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: Implications for the long-lasting breakup process of Rodinia. J Geol Soc London, 2008, 165: 887-890??
[58]  85 Yarmolyuk V V, Kovalenko V I, Salnikova E B, et al. Late Riphean rifting and breakup of laurasia: Data in geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian craton. Dokl Earth Sci, 2005, 404: 1031-1036
[59]  86 Gladkochub D P, Pisarevsky S A, Donskaya T V, et al. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Res, 2010, 183: 660-668??
[60]  87 Zhu W B, Zheng B H, Shu L S, et al. Geochemistry and SHRIMP U-Pb zircon geochronology of the Korla mafic dykes: Constrains on the Neoproterozoic continental breakup in the Tarim Block, northwest China. J Asian Earth Sci, 2011, 42: 791-804??
[61]  1 郑永飞. 新元古代超大陆构型中华南的位置. 科学通报, 2004, 49: 715-717
[62]  3 Yu J H, O’Reilly S Y, Wang L J, et al. Where was South China in the Rodinia supercontinent?: Evidence from U-Pb geochronology and Hf isotope of detrital zircon. Precambrian Res, 2008, 164: 1-15??
[63]  5 Zhou M F, Ma Y X, Yan D P, et al. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res, 2006, 144: 19-38??
[64]  8 Li X H, Li W X, Li Z X, et al. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 2008, 102: 341-357??
[65]  9 Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusion in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Res, 2007, 152: 27-47??
[66]  12 Zhao J H, Zhou M F. Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region, South China. J Geol, 2009, 117: 54-70 ??
[67]  19 李献华, 周国庆, 赵建新. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义. 地球化学, 1994, 23: 125-131
[68]  34 焦文放, 吴元保, 彭敏, 等. 扬子板块最古老岩石的锆石U-Pb 年龄和Hf同位素组成. 中国科学D辑: 地球科学, 2009, 39: 872-887
[69]  35 Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Res, 2006, 151: 79-100??
[70]  37 Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett, 2002, 196: 51-67??
[71]  42 Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implication. Precambrian Res, 2012, 200-203: 26-37
[72]  43 高山, 张本仁. 扬子地台北部太古宙TTG片麻岩的发现及其意义. 地球科学, 1990, 15: 675-679
[73]  49 周鼎武, 张成立, 刘良, 等. 武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论. 地球学报, 1998, 19: 25-30
[74]  50 蔡志勇, 熊小林, 罗洪, 等. 武当地块耀岭河群火山岩的时代归属: 单锆石U-Pb年龄制约. 地质学报, 2007, 81: 620-625
[75]  51 Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosys, 2009, 10: Q04010, doi: 10.1029/2009GC002400??
[76]  54 李献华, 李武显, 王选策, 等. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约. 中国科学D辑: 地球科学, 2009, 39: 872-887
[77]  55 Li X H, Long W G, Li Q L, et al. Penglai zircon megacryst: A potential new working reference for microbeam analysis of Hf-O isotopes and U-Pb age. Geostand Geoanal Res, 2010, 34: 117-134??
[78]  57 Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal Atom Spectrom, 2010, 25: 1107-1113??
[79]  61 Chu N C, Taylor R N, Chavagnac G, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference correction. J Anal Atom Spectrom, 2002, 17: 1567-1574??
[80]  62 S?derlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett, 2004, 219: 311-324??
[81]  63 Blichert-Toft J, Albarède F. Hafnium isotope in Jack Hills zircons and the formation of the Hadean crust. Earth Planet Sci Lett, 2008, 265: 686-702??
[82]  67 Patchett P J, Kouvo O, Hedge C E, et al. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contrib Mineral Petrol, 1981, 78: 279-297
[83]  68 Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constrains on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol, 2006, 231: 135-158??
[84]  70 王涛, 王宗起, 闫全人, 等. 南秦岭白水江群变基性火山岩块体的形成时代及其地球化学特征. 岩石学报, 2011, 27: 645-656
[85]  77 Münker C. The isotope and trace element budget of the Cambrian Devil River arc system, New Zealand: Identification of four source components. J Petrol, 2000, 41: 759-788??
[86]  78 凌文黎, 程建萍, 王歆华, 等. 武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示. 岩石学报, 2002, 18: 25-36
[87]  79 Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res, 2003, 122: 141-158??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133