1 Falandysz J, Kawano M, Ueda M, et al. Composition of chloronaphthalene congeners in technical chloronaphthalene formulations of the Halowax series. J Environ Sci Heal A, 2000, 35: 281-298
[2]
3 Domingo J L. Polychlorinated naphthalenes in animal aquatic species and human exposure through the diet: A review. J Chromatogr A, 2004, 1054: 327-334
[3]
4 Blankenship A L, Kannan K, Villalobos S A, et al. Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses. Environ Sci Technol, 2000, 34: 3153-3158
[4]
6 Liu G R, Zheng M H, Du B, et al. Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces. Environ Sci Pollut Res, 2012, 19: 3645-3650
[5]
9 Hogarh J N, Seike N, Kobara Y, et al. Atmospheric Polychlorinated Naphthalenes in Ghana. Environ Sci Technol, 2012, 46: 2600-2606
[6]
11 Richter S, Steinhauser K G. BAT and BEP as instruments for reducing emissions of unintentionally produced POPs and development of guidelines under the Stockholm convention. Environ Sci Pollut Res, 2003, 10: 265-270
[7]
14 Abad E, Caixach J, Rivera J. Dioxin like compounds from municipal waste incinerator emissions: Assessment of the presence of polychlorinated naphthalenes. Chemosphere, 1999, 38: 109-120
[8]
18 Fiedler H. National PCDD/PCDF release inventories under the Stockholm convention on persistent organic pollutants. Chemosphere, 2007, 67: S96-S108
[9]
19 Hu J, Zheng M, Liu W, et al. Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators. Environ Sci Pollut Res, 2013, doi: 10.1007/s11356-11012-11218-11350
[10]
21 Jansson S, Fick J, Marklund S. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion. Chemosphere, 2008, 72: 1138-1144
[11]
22 Ba T, Zheng M H, Zhang B, et al. Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China. Environ Sci Technol, 2010, 44: 2441-2446
[12]
25 Helm P A, Bidleman T F. Current combustion-related sources contribute to polychlorinated naphthalene and dioxin-like polychlorinated biphenyl levels and profiles in air in Toronto, Canada. Environ Sci Technol, 2003, 37: 1075-1082
[13]
27 Noma Y, Yamamoto T, Sakai S I. Congener-specific composition of polychlorinated naphthalenes, coplanar PCBs, dibenzo-p-dioxins, and dibenzofurans in the halowax series. Environ Sci Technol, 2004, 38: 1675-1680
[14]
29 Imagawa T, Lee C W. Correlation of polychlorinated naphthalenes with polychlorinated dibenzofurans formed from waste incineration. Chemosphere, 2001, 44: 1511-1520
[15]
31 Li Y M, Zhang Q H, Ji D S, et al. Levels and vertical distributions of PCBs, PBDEs, and OCPs in the atmospheric boundary layer: Observation from the Beijing 325-m meteorological tower. Environ Sci Technol, 2009, 43: 1030-1035
[16]
2 Bidleman T F, Helm P A, Braune B M, et al. Polychlorinated naphthalenes in polar environments—A review. Sci Total Environ, 2010, 408: 2919-2935
[17]
5 Lerche D, van de Plassche E, Schwegler A, et al. Selecting chemical substances for the UN-ECE POP protocol. Chemosphere, 2002, 47: 617-630
[18]
7 Falandysz J. Polychlorinated naphthalenes: An environmental update. Environ Pollut, 1998, 101: 77-90
[19]
8 Yamashita N, Kannan K, Imagawa T, et al. Concentrations and profiles of polychlorinated naphthalene congeners in eighteen technical polychlorinated biphenyl preparations. Environ Sci Technol, 2000, 34: 4236-4241
[20]
10 McKay G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chem Eng J, 2002, 86: 343-368
[21]
12 Tuppurainen K, Halonen I, Ruokojarvi P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review. Chemosphere, 1998, 36: 1493-1511
[22]
13 Xhrouet C, De Pauw E. Formation of PCDD/Fs in the sintering process: Influence of the raw materials. Environ Sci Technol, 2004, 38: 4222-4226
[23]
15 Schneider M, Stieglitz L, Will R, et al. Formation of polychlorinated naphthalenes on fly ash. Chemosphere, 1998, 37: 2055-2070
[24]
16 Huang H, Buekens A. On the mechanisms of dioxin formation in combustion processes. Chemosphere, 1995, 31: 4099-4117
[25]
17 Ba T, Zheng M H, Zhang B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China. Chemosphere, 2009, 75: 1173-1178
[26]
20 Hu J, Zheng M, Nie Z, et al. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy. Chemosphere, 2013, 90: 89-94
[27]
23 Nie Z Q, Liu G R, Liu W B, et al. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China. Atmos Environ, 2012, 57: 109-115
[28]
24 Guo L, Zhang B, Xiao K, et al. Levels and distributions of polychlorinated naphthalenes in sewage sludge of urban wastewater treatment plants. Chin Sci Bull, 2008, 53: 508-513
[29]
26 Meijer S N, Harner T, Helm P A, et al. Polychlorinated naphthalenes in UK soils: Time trends, markers of source, and equilibrium status. Environ Sci Technol, 2001, 35: 4205-4213
[30]
28 Liu G R, Zheng M H, Lv P, et al. Estimation and characterization of polychlorinated naphthalene emission from coking industries. Environ Sci Technol, 2010, 44: 8156-8161
[31]
30 Oh J E, Gullett B, Ryan S, et al. Mechanistic relationships among PCDDs/Fs, PCNs, PAHs, CIPhs, and CIBzs in municipal waste incineration. Environ Sci Technol, 2007, 41: 4705-4710
[32]
32 Everaert K, Baeyens J. The formation and emission of dioxins in large scale thermal processes. Chemosphere, 2002, 46: 439-448