全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

基于芳香性聚酰亚胺的光电功能材料及器件研究进展

DOI: 10.1360/972013-39, PP. 2690-2706

Keywords: 聚酰亚胺,光电功能化,有机电子学,有机光电器件

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚酰亚胺是一类重要的高性能聚合物,具有优良的热性能、机械性能和电学性能.近年来,芳香性聚酰亚胺作为新型光电功能材料在有机太阳电池、场效应晶体管、电存储等有机光电器件中的应用价值日益凸显,引起研究者的广泛关注.本文根据芳香性聚酰亚胺的分子结构特点,从光电功能化方法和材料制备策略出发,全面归纳和总结了芳香性聚酰亚胺在光电子器件领域的研究进展,阐述了此类材料的分子结构设计与光电性质以及光电器件性能的内在关系,为今后开发新型高效芳香性聚酰亚胺光电功能材料和器件提供参考.

References

[1]  4 Song S, Cho B, Kim T, et al. Three-dimensional integration of organic resistive memory devices. Adv Mater, 2010, 22: 5048-5052
[2]  5 Ling Q D, Liaw D J, Teo E Y H, et al. Polymer memories: Bistable electrical switching and device performance. Polymer, 2007, 48:5182-5201
[3]  6 Zhan X W, Tan Z A, Domercq B Z, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc, 2007, 129: 7246-7247
[4]  7 Allard S, Forster M, Souharce B, et al. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed, 2008, 47: 4070-4098
[5]  8 Mal’tsev E I, Brusentseva M A, Lypenko D A. Electroluminescent properties of anthracene-containing polyimides. Polym Adv Technol,2000, 11: 325-329
[6]  9 Yang C P, Su Y Y, Wen S J, et al. Highly optically transparent/low color polyimide films prepared from hydroquinone-or resorcinol- based bis(ether anhydride) and trifluoromethyl-containing bis(ether amine)s. Polymer, 2006, 47: 7021-7033
[7]  10 Polander L E, Tiwari S P, Pandey L, et al. Solution-processed molecular bis(naphthalene diimide) derivatives with high electron mobility. Chem Mater, 2011, 23: 3408-3410
[8]  11 Liaw D J, Wang K L, Chang F C. Novel organosoluble poly(pyridine-imide) with pendent pyrene group: Synthesis, thermal, optical, electrochemical, electrochromic, and protonation characterization. Macromolecules, 2007, 40: 3568-3574
[9]  12 Tao L M, Yang H X, Liu J G, et al. Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides. Polymer, 2009, 50: 6009-6018
[10]  13 Li Z, Liu J G, Gao Z Q, et al. Organo-soluble and transparent polyimides containing phenylphosphine oxide and trifluoromethyl moiety: Synthesis and characterization. Eur Polym J, 2009, 45: 1139-1148
[11]  16 Usta H, Facchetti A, Marks T J. n-Channel semiconductor materials design for organic complementary circuits. Accounts Chem Res,2011, 44: 501-510
[12]  28 Bu L, Guo X Y, Yu B, et al. Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. J Am Chem Soc, 2009, 131: 13242-13243
[13]  30 Ego C, Marsitzky D, Becker S, et al. Attaching perylene dyes to polyfluorene: Three simple, efficient methods for facile color tuning of light-emitting polymers. J Am Chem Soc, 2003, 125: 437-443
[14]  31 Wang H, Pu K, Huang S, et al. Alternating copolymers based on perylene bisimide and oligo(p-phenylene ethynylene) units: Synthesis, characterization, and photoinduced energy and electron transfer processes of a new class of donor-acceptor systems. React Func Polym,2009, 69: 117-123
[15]  32 Marques A T, Burrows H D, Melo S, et al. Spectroscopic properties, excitation, and electron transfer in an anionic water-soluble poly(fluorene-alt-phenylene)-perylenediimide copolymer. J Phys Chem B, 2012, 116: 7548-7559
[16]  33 Kozma E, Kotowski D, Bertini F, et al. Synthesis of donor-acceptor poly(perylene diimide-altoligothiophene) copolymers as n-type materials for polymeric solar cells. Polymer, 2010, 51: 2264-2270
[17]  34 Kozma E, Munno F, Kotowski D, et al. Synthesis and characterization of perylene-based donor-acceptor copolymers containing triple bonds. Synth Met, 2010, 160: 996-1001
[18]  35 Tan Z A, Zhou E J, Zhan X W, et al. Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide-alt-bis (dithienothiophene)]. Appl Phys Lett, 2008, 93: 073309
[19]  36 Wang H Y, Peng B, Wei W. Synthesis and optoelectronic characterization of poly(fluorenylethynylene)s containing perylene bisimide moiety in the backbone. J Polym Sci Pt B: Polym Phys, 2008, 46: 1932-1938
[20]  37 Liu Y, Yang C H, Li Y J, et al. Synthesis and photovoltaic characteristics of novel copolymers containing poly(phenylenevinylene) and triphenylamine moieties connected at 1,7 bay positions of perylene bisimide. Macromolecules, 2005, 38: 716-721
[21]  38 Liu Y, Wang N, Li Y J, et al. A new class of conjugated polyacetylenes having perylene bisimide units and pendant fullerene or porphyrin groups. Macromolecules, 2005, 38: 4880-4887
[22]  41 Battagliarin G, Li C, Enkelmann V, et al. 2,5,8,11-Tetraboronic ester perylenediimides: A next generation building block for dye-stuff synthesis. Org Lett, 2011, 13: 3012-3015
[23]  42 Battagliarin G, Zhao Y F, Li C, et al. Efficient tuning of LUMO levels of 2,5,8,11-substituted perylenediimides via copper catalyzed reactions. Org Lett, 2011, 13: 3399-3401
[24]  43 Qian H L, Negri F R, Wang C R, et al. Fully conjugated tri(perylene bisimides): An approach to the construction of n-type graphene nanoribbons. J Am Chem Soc, 2008, 130: 17970-17976
[25]  44 Qian H, Wang Z, Yue W, et al. Exceptional coupling of tetrachloroperylene bisimide: Combination of ullmann reaction and C-H transformation. J Am Chem Soc, 2007, 129: 10664-10665
[26]  45 Shi Y B, Oian H L, Li Y, et al. Copper-mediated domino process for the synthesis of tetraiodinated di(perylene bisimide). Org Lett, 2008,10: 2337-2340
[27]  47 Asha S K, Jancy B. Synthesis and self-organization properties of copolyurethanes based on perylenediimide and naphthalenediimide units. J Polym Sci Pol Chem, 2009, 47: 1224-1235
[28]  53 Durban M M, Kazarinoff P D, Luscombe C K. Synthesis and characterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications. Macromolecules, 2010, 43: 6348-6352
[29]  54 Kim F S, Guo X G, Watson M D, et al. High-mobility ambipolar transistors and high-gain inverters from a donor-acceptor copolymer semiconductor. Adv Mater, 2010, 22: 478-482
[30]  55 Guo X G, Kim F S, Seger M J, et al. Naphthalene diimide-based polymer semiconductors: Synthesis, structure-property correlations, and n-channel and ambipolar field-effect transistors. Chem Mater, 2012, 24: 1434-1442
[31]  59 Huang Y J, Ren G Q, Murari N M, et al. n-Type naphthalene diimide-biselenophene copolymer for all-polymer bulk heterojunction solar cells. Macromolecules, 2012, 45: 9056-9062
[32]  60 Polander L E, Tiwari S P, Pandey L, et al. Solution-processed molecular bis(naphthalene diimide) derivatives with high electron mobility. Chem Mater, 2011, 23: 3408-3410
[33]  61 Maki Y, Mori H, Endo T. Synthesis of well-defined alternating copolymers by RAFT copolymerization of N-vinylnaphthalimide. Macromolecules,2008, 41: 8397-8404
[34]  65 Piliego C, Holcombe T W, Douglas J D, et al. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc, 2010, 132: 7595-7597
[35]  67 Guo X G, Ortiz R P, Zheng Y, et al. Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: Toward high-performance, air-stable organic thin-film transistors. J Am Chem Soc, 2011, 133: 13685-13697
[36]  68 Hong Y R, Ng J Y, Wong H K, et al. Synthesis and characterization of a series of low-bandgap copolymers based on cyclopenta[2,1-b:3,4-b′]dithiophene and thienopyrroledione for photovoltaic applications. Sol Energ Mat Sol C, 2012, 102: 58-65
[37]  70 Berrouard P, Dufresne S, Pron A, et al. Low-cost synthesis and physical characterization of thieno [3,4-c]pyrrole-4,6-dione-based polymers. J Org Chem, 2012, 77: 8167-8173
[38]  76 Beaupré S, Pron A, Drouin S H, et al. Thieno-, furo-, and selenopheno[3,4-c]pyrrole-4,6-dione copolymers: Effect of the heteroatom on the electrooptical properties. Macromolecules, 2012, 45: 6906-6914
[39]  77 Roberts M E, Queralto N, Mannsfeld S C, et al. Cross-linked polymer gate dielectric films for low-voltage organic transistors. Chem Mater, 2009, 21: 2292-2299
[40]  82 Ling Q D, Chang F C, Song Y, et al. Synthesis and dynamic random access memory behavior of a functional polyimide. J Am Chem Soc,2006, 128: 8732-8733
[41]  86 Lee T J, Ko Y G, Yen H J, et al. Programmable digital nonvolatile memory behaviors of donor-acceptor polyimides bearing triphenylamine derivatives: Effects of substituents. Polym Chem, 2012, 3: 1276-1283
[42]  87 Liu Q S, Jiang K J, Wang L H, et al. High-performance optoelectrical dual-mode memory based on spiropyran-containing polyimide. Appl Phys Lett, 2010, 96: 213304-213305
[43]  88 Kim K, Park S, Hahm S G, et al. Nonvolatile unipolar and bipolar bistable memory characteristics of a high temperature polyimide bearing diphenylaminobenzylidenylimine moieties. J Phys Chem B, 2009, 113: 9143-9150
[44]  89 Kuorosawa T, Chueh C, Liu C, et al. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules, 2010, 43: 1236-1244
[45]  90 Park S, Kim K, Kim D M, et al. High temperature polyimide containing anthracene moiety and its structure, interface, and nonvolatile memory behavior. Appl Mater Interfaces, 2011, 3: 765-773
[46]  91 Liu Y L, Wang K L, Huang G S, et al. Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moieties. Chem Mater, 2009, 21: 3391-3399
[47]  92 Liu Y W, Zhang Y, Lan Q, et al. High-performance functional polyimides containing rigid nonplanar conjugated triphenylethylene moieties. Chem Mater, 2012, 24: 1212-1222
[48]  93 You N H, Chueh C C, Liu C L, et al. Synthesis and memory device characteristics of new sulfur donor containing polyimides. Macromolecules,2009, 42: 4456-4463
[49]  97 Fang Y Q, Wang J, Zhang Q, et al. Synthesis of soluble polyimides for vertical alignment of liquid crystal via one-step method. Eur Polym J, 2010, 46: 1163-1167
[50]  98 Wakita J, Sekino H, Sakai K, et al. Molecular design, synthesis, and properties of highly fluorescent polyimides. J Phys Chem B, 2009,113: 15212-15224
[51]  100 Fukuzaki N, Higashihara T, Ando S, et al. Synthesis and characterization of highly refractive polyimides derived from thiophene- containing aromatic diamines and aromatic dianhydrides. Macromolecules, 2010, 43: 1836-1843
[52]  101 You N H, Suzuki Y, Yorifuji D, et al. Synthesis of high refractive index polyimides derived from 1,6-bis-(p-aminophenylsulfanyl)-3,4,8,9-tetrahydro-2,5,7,10-tetrathiaanthracene and aromatic dianhydrides. Macromolecules, 2008, 41: 6361-6366
[53]  102 Kim K, Yen H J, Ko Y G, et al. Electrically bistable digital memory behaviors of thin films of polyimides based on conjugated bis(triphenylamine) derivatives. Polymer, 2012, 53: 4135-4144
[54]  1 Zhou W Y, Wen Y G, Ma L C, et al. Conjugated polymers of rylene diimide and phenothiazine for n-channel organic field-effect transistor. Macromolecules, 2012, 45: 4115-4121
[55]  2 Wang L, Tian Y, Ding H, et al. Microstructure and properties of organosoluble polyimide/silica hybrid films. Eur Polym J, 2006, 42:2921-2930
[56]  3 Liaw D J, Liaw B Y, Yu C W. Synthesis and characterization of new organosoluble polyimides based on flexible diamine. Polymer, 2001,42: 5175-5179
[57]  14 Zhang Q Y, Li S H, Li W M, et al. Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer, 2007,48: 6246-6253
[58]  15 Liaw D J, Chang F C, Leung M K, et al. High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene-biphenyl diamine. Macromolecules, 2005, 38: 4024-4029
[59]  17 叶怀英, 李文, 李维实. 有机太阳能电池用聚合物给体材料的研究进展. 有机化学, 2012, 32: 266-283
[60]  18 Wakita J, Sekino H, Sakai K, et al. Molecular design, synthesis, and properties of highly fluorescent polyimides. J Phys Chem B, 2009,113: 15212-15224
[61]  19 Sakai N, Lista M, Kel O, et al. Self-organizing surface-initiated polymerization: Facile access to complex functional systems. J Am Chem Soc, 2011, 133: 15224-15227
[62]  20 Ba C Y, Economy J. Preparation of PMDA/ODA polyimide membrane for use as substrate in a thermally stable composite reverse osmosis membrane. J Membrane Sci, 2010, 363: 140-148
[63]  21 Qiu Z M, Chen G, Zhang Q Y, et al. Synthesis and gas transport property of polyimide from 2,2′-disubstituted biphenyltetracarboxylic dianhydrides (BPDA). Eur Polym J, 2007, 43: 194-204
[64]  22 Wurthner F, Stolte M. Naphthalene and perylene diimides for organic transistors. Chem Commun, 2011, 47: 5109-5115
[65]  23 王洪宇, 彭波, 韦玮. 含苝酰亚胺衍生物太阳电池材料. 化学进展, 2008, 20: 1751-1760
[66]  24 Gómez R, Veldman D, Blanco R, et al. Energy and electron transfer in a poly(fluorene-alt-phenylene) bearing perylenediimides as pendant electron acceptor groups. Macromolecules, 2007, 40: 2760-2772
[67]  25 Gómez R, Seoane C, Segura J L. Synthesis of conjugated fluorene-alt-thiophene polymers with pendant perylenediimide units. J Org Chem, 2010, 75: 5099-5108
[68]  26 Blanco R, Gómez R, Seoane C, et al. An ambipolar peryleneamidine monoimide-fused polythiophene with narrow band gap. Org Lett,2007, 9: 2171-2174
[69]  27 Zhang Q, Cirpan A, Russell T P, et al. Donor-acceptor poly(thiophene-block-perylene diimide) copolymers: Synthesis and solar cell fabrication. Macromolecules, 2009, 42: 1079-1082
[70]  29 Hüttner S, Sommer M, Thelakkat M. n-Type organic field effect transistors from perylene bisimide block copolymers and homopolymers. Appl Phys Lett, 2008, 92: 093302
[71]  39 Nakazono S, Imazaki Y, Yoo H, et al. Regioselective Ru-catalyzed direct 2,5,8,11-alkylation of perylene bisimides. Chem Eur J, 2009,15: 7530-7533
[72]  40 Nakazono S, Easwaramoorthi S, Kim D, et al. Synthesis of arylated perylene bisimides through C-H bond cleavage under ruthenium catalysis. Org Lett, 2009, 11: 5426-5429
[73]  46 Gawrys P, Djurado D, Rimar?ík J, et al. Effect of N-substituents on redox, optical, and electronic properties of naphthalene bisimides used for field-effect transistors fabrication. J Phys Chem B, 2010, 114: 1803-1809
[74]  48 Babel A, Jenekhe S A. High electron mobility in ladder polymer field-effect transistors. J Am Chem Soc, 2003, 125: 13656-13657
[75]  49 Chen Z C, Zheng Y, Yan H, et al. Naphthalenedicarboximide vs perylenedicarboximide-based copolymers: Synthesis and semiconducting properties in Bottom-Gate n-channel organic transistors. J Am Chem Soc, 2009, 131: 8-9
[76]  50 Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457: 679-686
[77]  51 Baeg K J, Khim D Y, Jung S W, et al. Remarkable enhancement of hole transport in top-gated n-type polymer field-effect transistors by a high-k dielectric for ambipolar electronic circuits. Adv Mater, 2012, 24: 5433-5439
[78]  52 Pietro R D, Fazzi D, Kehoe T B, et al. Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors. J Am Chem Soc, 2012, 134: 14877-14889
[79]  56 Wei Y F, Zhang Q, Jiang Y D, et al. Novel low bandgap EDOT-naphthalene bisimides conjugated polymers: Synthesis, redox, and optical properties. Macromol Chem Phys, 2009, 210: 769-775
[80]  57 Ahmed E, Ren G Q, Kim F S, et al. Design of new electron acceptor materials for organic photovoltaics: Synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides. Chem Mater, 2011, 23: 4563-4577
[81]  58 Huang H, Chen Z H, Ortiz R P, et al. Combining electron-neutral building blocks with intramolecular “conformational locks” affords stable, high-mobility P- and N-channel polymer semiconductors. J Am Chem Soc, 2012, 134: 10966-10973
[82]  62 Mayukh M, Jung I H, He F, et al. Incremental optimization in donor polymers for bulk heterojunction organic solar cells exhibiting high performance. J Polym Sci Pol Phys, 2012, 50: 1057-1070
[83]  63 Zhang Q T, Tour J M. Low optical bandgap polythiophenes by an alternating donor/acceptor repeatunit strategy. J Am Chem Soc, 1997,119: 5056-5065
[84]  64 Zou Y, Najari A, Berrouard P, et al. A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J Am Chem Soc, 2010,132: 5330-5331
[85]  66 Guo X G, Xin H, Kim F S, et al. Thieno[3,4-c] pyrrole-4,6-dione-based donor-acceptor conjugated polymers for solar cells. Macromolecules,2011, 44: 269-277
[86]  69 Zhou E, Cong J Z, Tajima K, et al. Conjugated polymers based on 1,3-dithien-2-yl-thieno[3,4-c] pyrrole-4,6-dione: Synthesis, characterization, and solvent effects on photovoltaic performance. J Phys Chem C, 2012, 116: 2608-2614
[87]  71 Zhang G B, Fu Y Y, Qiu L, et al. Synthesis and characterization of thieno [3,4-c]pyrrole-4,6-dione and pyrrolo[3,4-c]pyrrole-1,4-dionebased random polymers for photovoltaic applications. Polymer, 2012, 53: 4407-4412
[88]  72 Wang H F, Shi Q Q, Lin Y, et al. Conjugated polymers based on a new building block: Dithienophthalimide. Macromolecules, 2011, 44:4213-4221
[89]  73 Zhou N J, Guo X G, Ortiz R P, et al. Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells. Adv Mater, 2012, 24: 2242-2248
[90]  74 Chen D G, Zhao Y, Zhong C, et al. Effect of polymer chain conformation on field-effect transistor performance: Synthesis and properties of two arylene imide based D-A copolymers. J Mater Chem, 2012, 22: 14639-14644
[91]  75 Kola S, Tremblay N J, Yeh M L, et al. Synthesis and characterization of a pyromellitic diimide-based polymer with C- and N-main chain links: Matrix for solution-processable n-channel field-effect transistors. ACS Macro Lett, 2012, 1: 136-140
[92]  78 Kukhta A, Kolesnik E, Taoubi M, et al. Polynaphthalimide is a new polymer for organic electroluminescence devices. Synth Met, 2001,119: 129-130
[93]  79 刘举庆, 陈淑芬, 陈琳, 等. 有机/聚合物电存储器及其作用机制. 科学通报, 2009, 54: 3420-3432
[94]  80 Zhang C Z, Lu C, Zhu J, et al. Enhanced nonlinear optical activity of molecules containing two D-π-A chromophores locked parallel to each other. Chem Mater, 2008, 20: 4628-4641
[95]  81 Sydlik S A, Chen Z, Swager T M. Triptycene polyimides: Soluble polymers with high thermal stability and low refractive indices. Macromolecules,2011, 44: 976-980
[96]  83 Kim D M, Park S, Lee T J, et al. Programmable permanent data storage characteristics of nanoscale thin films of a thermally stable aromatic polyimide. Langmuir, 2009, 25: 11713-11719
[97]  84 Lee T J, Chang C W, Hahm S G, et al. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology, 2009, 20: 135204
[98]  85 Kim D M, Ko Y G, Choib J K, et al. Digital memory behaviors of aromatic polyimides bearing bis(trifluoromethyl)- and bithiophenyltriphenylamine units. Polymer, 2012, 53: 1703-1710
[99]  94 Liu C, Kurosawa T, Yu A, et al. New dibenzothiophene-containing donor-acceptor polyimides for high-performance memory device applications. J Phys Chem C, 2011, 115: 5930-5939
[100]  95 Chou Y H, You N H, Kurosawa T, et al. Thiophene and selenophene donor-acceptor polyimides as polymer electrets for nonvolatile transistor memory devices. Macromolecules, 2012, 45: 6946-6956
[101]  96 Kurosawa T, Lai Y C, Higashihara T, et al. Tuning the electrical memory characteristics from volatile to nonvolatile by perylene imide composition in random copolyimides. Macromolecules, 2012, 45: 4556-4563
[102]  99 You N H, Suzuki Y, Higashihara T, et al. Synthesis and characterization of highly refractive polyimides derived from 2,7-bis(4′-aminophenylenesulfanyl) thianthrene-5,5,10,10-tetraoxide and aromatic dianhydrides. Polymer, 2009, 50: 789-795

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133