全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

华北克拉通早前寒武纪构造-热事件性质探索:铁铜沟组石英岩中碎屑锆石U-Pb-Hf-O同位素组成

, PP. 2946-2957

Keywords: 华北克拉通,铁铜沟组,碎屑锆石,Hf同位素,O同位素

Full-Text   Cite this paper   Add to My Lib

Abstract:

碎屑沉积岩是其源区出露岩石的天然混合样品,是探讨克拉通形成演化的主要途径之一.铁铜沟组出露于华北克拉通南缘小秦岭地区,主要由石英岩组成,分别与下伏太华杂岩和上覆古元古代熊耳群呈不整合接触.原岩为一套成熟度较高的陆源碎屑岩.本文利用铁铜沟组石英岩中最年轻碎屑锆石年龄和侵入熊耳群上部的侵入体年龄将铁铜沟组原岩沉积年龄较精确地限定在1.91~1.80Ga.碎屑锆石U-Pb年龄分析结果显示,铁铜沟组石英岩中碎屑锆石年龄峰值为~2.1Ga,与华北克拉通中部带陆续发现的2.2~2.0Ga的岩浆活动记录吻合.结合铁铜沟组石英岩具有较高的结构成熟度和成分成熟度特点,推测铁铜沟组石英岩的物源主要来自华北克拉通中部~2.1Ga的火成岩区.这些~2.1Ga碎屑锆石大多数为负εHf(t)值(-7.8~-0.01),对应的Hf模式年龄明显大于锆石的结晶年龄,并且大多数~2.1Ga碎屑锆石的δ18O>6.5‰,表明它们形成于古老的陆壳物质部分熔融.此外,铁铜沟组石英岩中2.8~2.7Ga和~2.5Ga碎屑锆石大多具有较高的εHf(t)正值和接近幔源岩浆结晶锆石的δ18O值,也支持华北克拉通在太古宙存在约2.7和2.5Ga两期显著地壳生长的认识.汇总华北拉通中部带古元古代变沉积岩中碎屑锆石Hf同位素数据,结果显示从新太古代至古元古代,碎屑锆石的Hf同位素组成主体向着放射性成因Hf减少的方向延伸,逐渐与地壳的演化线呈相似的演化趋势,暗示在华北克拉通可能并不存在长达7亿年持续的俯冲;或者表明在~2.1Ga华北克拉通的构造演化发生明显变化,比如发生了俯冲板块后撤导致岩浆源区锆石的Hf同位素组成产生明显变化.

References

[1]  1 Belousova E A, Reid A J, Griffin W L. Rejuvenation vs. Recycling of Archean crust in the gawler craton, south Australia: Evidence from U-Pb and Hf isotopes in detrital zircon. Lithos, 2009, 113: 570-582
[2]  3 Iizuka T, Komiya T, Rino S, et al. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochim Cosmochim Acta, 2010, 74: 2450-2472
[3]  6 Zhai M G, Guo J H, Liu W J. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. J Asian Earth Sci, 2005, 24: 547-561
[4]  9 Zhao G C, Cawood P A, Wilde S A. Metamorphism of basement rocks in the central zone of the North China Craton: Implications for paleoproterozoic tectonic evolution. Precambrian Res, 2000, 103: 55-88
[5]  11 赵宗溥. 中朝准地台前寒武纪地壳演化. 北京: 科学出版社, 1993. 357-388
[6]  12 第五春荣, 孙勇, 林慈銮, 等. 河南鲁山地区太华杂岩LA-(MC)-ICPMS锆石U-Pb年代学及Hf同位素组成. 科学通报, 2010, 55: 2112-2128
[7]  16 Yang C H, Du L L, Ren L D. SHRIMP U-Pb ages and stratigraphic correlation of the Angou group on the southern margin of the North China Craton. Acta Petrol Sin, 2009, 25: 1853-1862
[8]  17 第五春荣, 孙勇, 袁洪林, 等. 河南登封地区嵩山石英岩碎屑锆石U-Pb年代学, Hf同位素组成及其地质意义. 科学通报, 2008, 53: 1923-1934
[9]  18 Liu C H, Zhao G C, Sun M, et al. Detrital zircon U-Pb dating, Hf isotopes and whole-rock geochemistry from the Songshan group in the Dengfeng complex: Constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Res, 2012, 192-195: 1-15
[10]  19 Peng P, Zhai M G, Ernst R E, et al. A 1.78 Ga large igneous province in the North China Craton: The Xiong'er volcanic Province and the north China dyke swarm. Lithos, 2008, 101: 260-280
[11]  20 陕西省地质矿产局. 陕西区域地质志. 北京: 地质出版社, 1989. 1-698
[12]  21 Wang X L, Jiang S Y, Dai B Z. Melting of enriched archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Res, 2010, 182: 204-216
[13]  22 Zhao G C, He Y H, Sun M, et al. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-mesoproterozoic Columbia supercontinent. Gondwana Res, 2009, 16: 170-181
[14]  24 Chu N C, Taylor R N, Chavagnac V R, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric. J Anal Atom Spectrom, 2002, 17: 1567-1574
[15]  27 Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta, 1999, 63: 533-556
[16]  28 Rudnick R L, Gao S. 3.01-composition of the continental crust. In: Treatise on Geochemistry. Oxford: Pergamon, 2003. 1-64
[17]  30 Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chem Geol, 2005, 216: 249-270
[18]  31 Liu C H, Zhao G C, Sun M, et al. U-Pb and Hf isotopic study of detrital zircons from the hutuo group in the Trans-North China Orogen and tectonic implications. Gondwana Res, 2011, 20: 106-121
[19]  32 Liu C H, Zhao G C, Sun M, et al. U-Pb geochronology and Hf isotope geochemistry of detrital zircons from the Zhongtiao complex: Constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Res, 2012, 222-223: 159-172
[20]  41 Zhao G C, Wilde S A, Cawood P A, et al. SHRIMP U-Pb zircon ages of the Fuping complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. Am J Sci, 2002, 302: 191-226
[21]  42 Guan H, Sun M, Wilde S A, et al. Shrimp U-Pb zircon geochronology of the Fuping complex: Implications for formation and assembly of the North China Craton. Precambrian Res, 2002, 113: 1-18
[22]  43 杨崇辉, 杜利林, 任留东, 等. 河北赞皇地区许亭花岗岩的时代及成因: 对华北克拉通中部带构造演化的制约. 岩石学报, 2011, 27: 1003-1016
[23]  45 杜利林, 杨崇辉, 任留东, 等. 吕梁地区2.2-2.1Ga岩浆事件以及构造意义. 岩石学报, 2012, 28: 1-20
[24]  49 杜利林, 杨崇辉, 郭敬辉, 等. 五台地区滹沱群底界时代: 玄武安山岩Shrimp锆石U-Pb定年. 科学通报, 2010, 55: 246-254
[25]  51 Wang Z H, Wilde S A, Wan J L. Tectonic setting and significance of 2.3-2.1 Ga magmatic events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic ultramafic intrusion in the Hengshan-Wutai-Fuping area. Precambrian Res, 2003, 178: 27-42
[26]  52 孙大中, 李惠民, 林源贤, 等. 中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究. 地质学报, 1991, 5: 216-231
[27]  54 第五春荣, 孙勇, 王倩. 华北克拉通地壳生长和演化: 来自现代河流碎屑锆石Hf同位素组成的启示. 岩石学报, 2012, 28: 3520-3530
[28]  57 Condie K C, Aster R C. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Res, 2010, 180: 227-236
[29]  59 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 2007, 23: 185-220
[30]  60 Valley J W, Lackey J S, Cavosie A J, et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol, 2005, 150: 561-580
[31]  63 翟明国. 克拉通化与华北陆块的形成. 中国科学: 地球科学, 2011, 54: 1037-1046
[32]  2 Wan Y S, Liu D Y, Wang W, et al. Provenance of Meso-Neoproterozoic cover sediments at the ming tombs, Beijing, North China Craton: An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Res, 2011, 20: 219-242
[33]  4 Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust. J Geol Soc London, 2010, 167: 229-248
[34]  5 翟明国, 卞爱国. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学D辑: 地球科学, 2000, 43: 129-137
[35]  7 Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 2003, 22: 383-397
[36]  8 Kusky T M, Li J H, Tucker R D. The Archean Dongwanzi ophiolite complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science, 2001, 292: 1142-1145
[37]  10 Zhao G C, Sun M, Wilde S A, et al. Late archean to paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005, 136: 177-202
[38]  13 Sun Y, Yu Z P, Kr?ner A. Geochemistry and single zircon geochronology of archaean TTG gneisses in the Taihua high-grade terrain, Lushan area, central China. J Southeast Asian Earth Sci, 1994, 10: 227-233
[39]  14 Zhang G W, Bai Y B, Sun Y, et al. Composition and evolution of the archaean crust in central Henan China. Precambrian Res, 1985, 27: 7-35
[40]  15 Diwu C R, Sun Y, Guo A L, et al. Crustal growth in the North China Craton at similar to 2.5 Ga: Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Res, 2011, 20: 149-170
[41]  23 Ludwing K R. User's manual for isoplot 3.00: A geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special Publications, 2003. 1-71
[42]  25 Albarède F, Scherer E E, Blichert-Toft J, et al. Γ-ray irradiation in the early solar system and the conundrum of the 176Lu decay constant. Geochim Cosmochim Acta, 2006, 70: 1261-1270
[43]  26 Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd isotopic composition of chur: Constraints from unequilibrated Chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett, 2008, 273: 48-57
[44]  29 李献华, 李武显, 王选策, 等. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约. 中国科学D辑: 地球科学, 2009, 39: 872-887
[45]  33 Liu C H, Zhao G C, Sun M, et al. U-Pb and Hf isotopic study of detrital zircons from the Yejishan group of the Lüliang Complex: Constraints on the timing of collision between the eastern and western blocks, North China Craton. Sediment Geol, 2011, 236: 129-140
[46]  34 Liu D Y, Wilde S A, Wan Y S, et al. Combined U-Pb, Hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the late Mesoarchean-early Neoarchean. Chem Geol, 2009, 261: 140-154
[47]  35 第五春荣, 孙勇, 刘养杰, 等. 秦皇岛柳江地区长龙山组石英砂岩物质源区组成——来自碎屑锆石U-Pb-Hf同位素的证据. 岩石矿物学杂志, 2011, 30: 1-12
[48]  36 Cui M L, Zhang B L, Zhang L C. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong'er group. Gondwana Res, 2011, 20: 184-193
[49]  37 Kr?ner A, Wilde S A, Li J H, et al. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of Northern China. J Asian Earth Sci, 2005, 24: 577-595
[50]  38 赵瑞幅, 郭敬辉, 彭澎, 等. 恒山地区古元古代2.1 Ga地壳重熔事件: 钾质花岗岩锆石U-Pb定年及Hf-Nd同位素研究. 岩石学报, 2011, 27: 1607-1623
[51]  39 王凯怡, 郝杰, Wilde S, 等. 山西五台山-恒山地区晚太古-早元古代若干关键地质问题的再认识: 单颗粒锆石离子探针质谱年龄提出的地质制约. 地质科学, 2000, 35: 175-184
[52]  40 王凯怡, Wilde S. 山西五台地区大洼梁花岗岩的SHRIMP锆石U-Pb精确年龄. 岩石矿物学杂志, 2002, 407: 411-420
[53]  44 Zhao G C, Wilde S A, Sun M, et al. Shrimp U-Pb zircon ages of granitoid rocks in the Lüliang complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Res, 2008, 160: 213-226
[54]  46 耿元生, 万渝生, 沈其韩, 等. 吕梁地区早前寒武纪主要地质事件的年代框架. 地质学报, 2000, 74: 216-223
[55]  47 耿元生, 杨崇辉, 万渝生. 吕梁地区古元古代花岗岩浆作用——来自同位素年代学的证据. 岩石学报, 2006, 22: 305-314
[56]  48 Liu S W, Zhang J, Li Q G, et al. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Res, 2012, 222-223: 173-190
[57]  50 Peng P, Guo J H, Zhai M G, et al. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics. Lithos, 2012, 148: 27-44
[58]  53 Wan Y S, Wilde S A, Liu D Y, et al. Further evidence for ~1.85 Ga metamorphism in the central zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Res, 2006, 9: 189-197
[59]  55 Jahn B M, Liu D Y, Wan Y S, et al. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am J Sci, 2008, 308: 232-269
[60]  56 Wan Y S, Liu D Y, Wang S J, et al. ~2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Res, 2011, 186: 169-180
[61]  58 Geng Y S, Du L L, Ren L D. Growth and reworking of the Early precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Res, 2012, 21: 517-529
[62]  61 Valley J W. Oxygen isotopes in zircon. Rev Mineral Geochem, 2003, 53: 343-385
[63]  62 Kemp AIS, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from Hafnium and Oxygen isotopes in zircon. Nature, 2006, 439: 580-583
[64]  64 Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan- Wutaishan area: Implications for the understanding of the Trans-North-China belt, North China Craton. Precambrian Res, 2007, 156: 85-106
[65]  65 Trap P, Faure M, Lin W, et al. Paleoproterozoic tectonic evolution of the Trans-North China Orogen: Toward a comprehensive model. Precambrian Res, 2012, 222-223: 191-211
[66]  66 耿元生, 沈其韩, 任留东. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报, 2010, 26: 1945-1966
[67]  67 Collins W J, Belousova E A, Kemp A, et al. Two contrasting Phanerozoic orogenic systems revealed by Hafnium isotope data. Nat Geosci, 2011, 4: 333-337
[68]  68 Gutscher M A, Dominguez S, Westbrook G K, et al. The gibraltar subduction: A decade of new geophysical data. Tectonophysics, 2012, 574-575: 72-91ib Mineral Petrol, 2005, 150: 561-580
[69]  61 Valley J W. Oxygen isotopes in zircon. Rev Mineral Geochem, 2003, 53: 343 -385
[70]  62 Kemp AIS, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from Hafnium and Oxygen isotopes in zircon. Nature, 2006, 439: 580-583
[71]  63 翟明国. 克拉通化与华北陆块的形成. 中国科学: 地球科学, 2011, 54: 1037-1046
[72]  64 Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan- Wutaishan area: Implications for the understanding of the Trans-North-China belt, North China Craton. Precambrian Res, 2007, 156:85-106
[73]  65 Trap P, Faure M, Lin W, et al. Paleoproterozoic tectonic evolution of the Trans-North China Orogen: Toward a comprehensive model. Precambrian Res, 2012, 222-223: 191-211
[74]  66 耿元生, 沈其韩, 任留东. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报, 2010, 26: 1945-1966
[75]  67 Collins W J, Belousova E A, Kemp A, et al. Two contrasting Phanerozoic orogenic systems revealed by Hafnium isotope data. Nat Geosci,2011, 4: 333-337
[76]  68 Gutscher M A, Dominguez S, Westbrook G K, et al. The gibraltar subduction: A decade of new geophysical data. Tectonophysics, 2012,574-575: 72-91 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133