1 Thackeray M M, David W I F, Bruce P G, et al. Lithium insertion into manganese spinels. Mater Res Bull, 1983, 18: 461-472
[2]
2 Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater, 2001, 13: 943-956
[3]
5 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367
[4]
6 Yoshio M, Noguchi H, Wang H Y, et al, Correlation of oxygen deficiency with discharge capacity at 3.2 V for (LiMn)3O4-z. J Power Sources, 2006, 154: 273-275
[5]
7 Gao Y, Dahn J R. Synthesis and characterization of Li1+xMn2-xO4 for Li-Ion battery applications. J Electrochem Soc, 1996, 143: 100-114
[6]
10 Myung S K, Komaba S, Kumagai N. Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the emulsion drying method. J Electrochem Soc, 2001, 148: 482-489
[7]
14 Sun Y K. Synthesis and electrochemical characterization of a new Se-doped spinel material for lithium secondary batteries. J Appl Electrochem, 2001, 31: 1149
[8]
17 Han C H, Hong Y S, Hong H. S, et al. Electrochemical properties of iodine-containing lithium manganese oxide spinel. J Power Sources, 2002, 111: 176-180
[9]
21 Kaga K, Hiroaki M, Kajiyam K, et al. Effect of polyhedron primary particle of Mn-spinel on electrochemical and Mn dissolution properties at high temperature. In: The 51th Battery Symposium in Japan, 2010
[10]
3 Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271-4301
8 Xia Y G, Wang H Y, Zhang Q, et al. Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries. J Power Sources, 2007, 166: 485-491
[13]
9 Xia Y G, Zhang Q, Wang H Y, et al. Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyMn2-x-yO4+d at elevated temperature. Electrochim Acta, 2007, 52: 4708-4714
[14]
11 Du K, Xie J Y, Wang J L, et al. LiMn2-xCrxO4 spinel prepared by a modified citrate route with combustion. J Power Sources, 2003, 119-121: 130-133
[15]
12 Wang H C, Lu C H. Dissolution behavior of chromium-ion doped spinel lithium manganate at elevated temperatures. J Power Sources, 2003, 119-121: 738-742
[16]
13 Shaju K M, Subba Rao G V, Chowdari B V R. Spinel phases, LiM1/6Mn11/6O4 (M=Co, Co-Al, Co-Cr, Cr-Al), as cathodes for lithium-ion batteries. Solid State Ionics, 2002, 148: 343-350
[17]
15 Shin Y J, Manthiram A. High rate, superior capacity retention LiMn2-2yLiyNiyO4 spinel cathodes for lithium-Ion batteries. Electrochem Solid-State Lett, 2003, 6: A34-A36
[18]
16 Tsai Y W, Santhanam R, Hwang B J, et al. Structure stabilization of LiMn2O4 cathode material by bimetal dopants. J Power Sources, 2003, 119-121: 701-705
[19]
18 Sun Y K, Park G S, Lee Y S, et al. Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling. J Electrochem Soc, 2001, 148: 994-998
[20]
19 Amatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn1-xO4-z Fz solid solution. J Electrochem Soc, 2001 148: A171-A182
[21]
20 Benedek R, Thackeray M M. Simulation of the surface structure of lithium manganese oxide spinel. Phys Rev B, 2011, 83: 195439