全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

高温型锰酸锂正极材料的晶体形貌控制和电化学性能

DOI: 10.1360/972013-805, PP. 3350-3356

Keywords: 尖晶石锰酸锂,正极材料,形貌,锰溶解

Full-Text   Cite this paper   Add to My Lib

Abstract:

尖晶石锰酸锂动力电池循环寿命较短和储藏性能差的主要原因之一是锰酸锂的锰易溶解于电解液中,特别在高温下(60℃)锰的溶解尤为严重.目前,锰酸锂的高温容量衰减机理虽已得到广泛的研究,但主要集中在脱嵌锂过程中的结构变化与容量之间的关系上.事实上,锰酸锂表面结构(晶面)及其界面反应很大程度上影响Mn的溶解.本文在控制锰酸锂氧缺陷的基础上,通过结合设计类球形锰酸锂单晶颗粒,可以减小其(111)晶面的面积,从而减少锰的溶解,进而提高锰酸锂材料的晶体结构稳定性和高温循环性能.结果表明,由这种类球形锰酸锂正极材料制作成的18650型电池具有优异的循环性能,在常温下1C倍率充放电循环2500次后,电池容量保持率维持在80%左右;即使在60℃高温下,400次循环后,容量保持率仍达80%.

References

[1]  1 Thackeray M M, David W I F, Bruce P G, et al. Lithium insertion into manganese spinels. Mater Res Bull, 1983, 18: 461-472
[2]  2 Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater, 2001, 13: 943-956
[3]  5 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367
[4]  6 Yoshio M, Noguchi H, Wang H Y, et al, Correlation of oxygen deficiency with discharge capacity at 3.2 V for (LiMn)3O4-z. J Power Sources, 2006, 154: 273-275
[5]  7 Gao Y, Dahn J R. Synthesis and characterization of Li1+xMn2-xO4 for Li-Ion battery applications. J Electrochem Soc, 1996, 143: 100-114
[6]  10 Myung S K, Komaba S, Kumagai N. Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the emulsion drying method. J Electrochem Soc, 2001, 148: 482-489
[7]  14 Sun Y K. Synthesis and electrochemical characterization of a new Se-doped spinel material for lithium secondary batteries. J Appl Electrochem, 2001, 31: 1149
[8]  17 Han C H, Hong Y S, Hong H. S, et al. Electrochemical properties of iodine-containing lithium manganese oxide spinel. J Power Sources, 2002, 111: 176-180
[9]  21 Kaga K, Hiroaki M, Kajiyam K, et al. Effect of polyhedron primary particle of Mn-spinel on electrochemical and Mn dissolution properties at high temperature. In: The 51th Battery Symposium in Japan, 2010
[10]  3 Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271-4301
[11]  4 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性. 化学进展, 2011, 23: 284-301
[12]  8 Xia Y G, Wang H Y, Zhang Q, et al. Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries. J Power Sources, 2007, 166: 485-491
[13]  9 Xia Y G, Zhang Q, Wang H Y, et al. Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyMn2-x-yO4+d at elevated temperature. Electrochim Acta, 2007, 52: 4708-4714
[14]  11 Du K, Xie J Y, Wang J L, et al. LiMn2-xCrxO4 spinel prepared by a modified citrate route with combustion. J Power Sources, 2003, 119-121: 130-133
[15]  12 Wang H C, Lu C H. Dissolution behavior of chromium-ion doped spinel lithium manganate at elevated temperatures. J Power Sources, 2003, 119-121: 738-742
[16]  13 Shaju K M, Subba Rao G V, Chowdari B V R. Spinel phases, LiM1/6Mn11/6O4 (M=Co, Co-Al, Co-Cr, Cr-Al), as cathodes for lithium-ion batteries. Solid State Ionics, 2002, 148: 343-350
[17]  15 Shin Y J, Manthiram A. High rate, superior capacity retention LiMn2-2yLiyNiyO4 spinel cathodes for lithium-Ion batteries. Electrochem Solid-State Lett, 2003, 6: A34-A36
[18]  16 Tsai Y W, Santhanam R, Hwang B J, et al. Structure stabilization of LiMn2O4 cathode material by bimetal dopants. J Power Sources, 2003, 119-121: 701-705
[19]  18 Sun Y K, Park G S, Lee Y S, et al. Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling. J Electrochem Soc, 2001, 148: 994-998
[20]  19 Amatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn1-xO4-z Fz solid solution. J Electrochem Soc, 2001 148: A171-A182
[21]  20 Benedek R, Thackeray M M. Simulation of the surface structure of lithium manganese oxide spinel. Phys Rev B, 2011, 83: 195439

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133