全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

锂离子电池电极/电解质材料的固体核磁共振研究进展

DOI: 10.1360/972013-878, PP. 3287-3300

Keywords: 锂离子电池,费米接触位移,顺磁性材料,固体电解质,SEI膜,固体NMR

Full-Text   Cite this paper   Add to My Lib

Abstract:

固体核磁共振(NMR)技术可探测固态材料中目标原子核周围的化学环境,是一种研究短程结构信息灵敏的表征手段.通过高转速魔角旋转6,7LiNMR谱,2D6,7LiEXSY谱以及弛豫时间T1,T2的测定,可获得锂离子电池电极/电解质材料的微观结构和离子扩散动力学信息,并可用于研究锂离子电池正负极材料在充放电过程中的结构变化,为锂离子电池电极/电解质材料的设计与发展提供理论支持.本文综述了近年来固体NMR技术在锂离子电池正负极材料、固体电解质及固体电解质界面膜(SEI)研究中的应用和发展.

References

[1]  1 Padhi A, Nanjundaswamy K, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188-1194
[2]  4 Amine K. Active material for lithium batteries. United States Patent, 2002/0039681 A1, 2002-4-4
[3]  5 Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271-4302
[4]  7 Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J Power Sources, 2010, 195: 2419-2430
[5]  10 张忠如, 杨勇, 刘汉三. 锂离子电池电极材料固体核磁共振研究进展. 化学进展, 2003, 15: 18-24
[6]  11 Grey C P, Dupre N. NMR Studies of cathode materials for lithium-ion rechargeable batteries. Chem Rev, 2004, 104: 4493-4512
[7]  13 Lowe I. Free induction decays of rotating solids. Phys Rev Lett, 1959, 2: 285-287
[8]  16 Poli F, Kshetrimayum J S, Monconduit L, et al. New cell design for in-situ NMR studies of lithium-ion batteries. Electrochem Commun, 2011, 13: 1293-1295
[9]  18 Letellier M, Chevallier F, Clinard C, et al. The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. J Chem Phys, 2003, 118: 6038-6045
[10]  20 Knight W. Nuclear magnetic resonance shift in metals. Phys Rev, 1949, 76: 1259-1260
[11]  22 Clément R J, Pell A J, Middlemiss D S, et al. Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations. J Am Chem Soc, 2012, 134: 17178-17185
[12]  24 Castets A, Carlier D, Boucher F, et al. Multinuclear NMR study of the LiFePO4·OH and FePO4·H2O homeotypic phases and first principles calculations. Electrode Mater, 2011
[13]  27 Tucker M C, Doeff M M, Richardson T J, et al. 7Li and 31 P magic angle spinning nuclear magnetic resonance of LiFePO4-type materials. Electrochem Solid-State Lett, 2002, 5: A95-A98
[14]  34 Cahill L S, Chapman R P, Kirby C W, et al. The challenge of paramagnetism in two-dimensional 6,7Li exchange NMR. Appl Magn Reson, 2007, 32: 565-581
[15]  35 Menetrier M, Saadoune I, Levasseur S, et al. The insulator-metal transition upon lithium deintercalation from LiCoO2: Electronic properties and 7Li NMR study. J Mater Chem, 1999, 9: 1135-1140
[16]  37 Bréger J, Dupré N, Chupas P J, et al. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: A joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. J Am Chem Soc, 2005, 127: 7529-7537
[17]  38 Yoon W-S, Iannopollo S, Grey C P, et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2-x)/3Li(1-2x)/O2 NMR studies and first principles calculations. Electrochem Solid-State Lett, 2004, 7: A167-A171
[18]  39 Yoon W-S, Grey C P, Balasubramanian M, et al. Combined NMR and XAS study on local environments and electronic structures of electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system. Electrochem Solid-State Lett, 2004, 7: A53
[19]  40 Cahill L S, Yin S C, Samoson A, et al. 6Li NMR studies of cation disorder and transition metal ordering in Li[Ni1/3Mn1/3Co1/O2 using ultrafast magic angle spinning. Chem Mater, 2005, 17: 6560-6566
[20]  41 Lee Y J, Eng C, Grey C P. 6Li magic angle spinning NMR study of the cathode material LiNixMn2-xO4: The effect of Ni doping on the Local structure during charging. J Electrochem Soc, 2001, 148: A249-A257
[21]  42 Lee Y J, Park S-H, Eng C, et al. Cation ordering and electrochemical properties of the cathode materials LiZnxMn2-xO4, 0 < x ≤ 0.5: A 6Li magic-angle spinning NMR spectroscopy and diffraction study. Chem Mater, 2001, 14: 194-205
[22]  46 Lee Y J, Wang F, Mukerjee S, et al. 6Li and 7Li Magic-angle spinning nuclear magnetic resonance and in situ X-Ray diffraction studies of the charging and discharging of LixMn2O4 at 4 V. J Electrochem Soc, 2000, 147: 803-812
[23]  51 Arroyo-deDompablo M E, Dominko R, Gallardo-Amores J M, et al. On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs. Chem Mater, 2008, 20: 5574-5584
[24]  52 Mali G, Meden A, Dominko R. 6Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. Chem Commun, 2010, 46: 3306-3308
[25]  55 Chen R, Heinzmann R, Mangold S, et al. Structural evolution of Li2Fe1-yMnySiO4 (y = 0, 0.2, 0.5, 1) cathode materials for Li-ion batteries upon electrochemical cycling. J Phys Chem C, 2012, 117: 884-893
[26]  56 程琥, 刘子庚, 李益孝, 等. 锂离子电池正极材料 Li2MnSiO4 固体核磁共振谱研究. 电化学, 2010, 16: 296-299
[27]  57 Yamakawa N, Jiang M, Grey C P. Investigation of the conversion reaction mechanisms for binary copper(Ⅱ) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem Mater, 2009, 21: 3162-3176
[28]  65 Zaghib K, Tatsumi K, Sawada Y, et al. 7LiNMR of well graphitized vapor grown carbon fibers and natural graphite negative electrodes of rechargeable lithium ion batteries. J Electrochem Soc, 1999, 146: 2784-2793
[29]  66 Tatsumi K, Akai T, Imamura T, et al. 7Li-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads. J Electrochem Soc, 1996, 143: 1923-1930
[30]  69 Dai Y, Wang Y, Eshkenazi V, et al. Lithium-7 nuclear magnetic resonance investigation of lithium insertion in hard carbon. J Electrochem Soc, 1998, 145: 1179-1183
[31]  70 Tatsumi K, Conard J, Nakahara M, et al. 7Li NMR studies on a lithiated non-graphitizable carbon fibre at low temperatures. Chem Commun, 1997, 687-688
[32]  77 Letellier M, Chevallier F, Morcrette M. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle. Carbon, 2007, 45: 1025-1034
[33]  78 Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc, 2009, 131: 9239-9249
[34]  80 K?ster T K J, Salager E, Morris A J, et al. Resolving the different silicon clusters in Li12Si7 by 29Si and 6,7Li solid-state NMR spectroscopy. Angew Chem Int Ed, 2011, 50: 12591-12594
[35]  81 Kuhn A, Sreeraj P, Pottgen R, et al. Li ion diffusion in the anode material Li12Si7: Ultrafast quasi-1D diffusion and two distinct fast 3D jump processes separately revealed by 7Li NMR relaxometry. J Am Chem Soc, 2011, 133: 11018-11021
[36]  82 Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science, 1997, 276: 1395-1397
[37]  84 Wilkening M, Amade R, Iwaniak W, et al. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12—A comparison of results from solid state NMR and impedance spectroscopy. Phys Chem Chem Phys, 2007, 9: 1239-1246
[38]  86 Knauth P. Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009, 180: 911-916
[39]  97 Ménétrier M, Vaysse C, Croguennec L, et al. 7Li and 1H MAS NMR observation of interphase layers on lithium nickel oxide based positive electrodes of lithium-ion batteries. Electrochem Solid-State Lett, 2004, 7: A140-A143
[40]  99 Dupré N, Martin J-F, Guyomard D, et al. Detection of surface layers using 7Li MAS NMR. J Mater Chem, 2008, 18: 4266-4273
[41]  102 Blanc F dr, Leskes M, Grey C P. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells. Acc Chem Res, 2013, 1952-1963
[42]  2 Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499
[43]  3 Armand M, Michot C, Ravet N, et al. Lithium insertion electrode materials based on orthosilicate derivatives. United States Patent, 6085015, 2000-7-4
[44]  6 Bruce P G, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930-2946
[45]  8 Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci, 2011, 4: 3223-3242
[46]  9 Grey C P, Lee Y J. Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci, 2003, 5: 883-894
[47]  12 Andrew E R, Bradbury A, Eades R G. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature, 1958, 182: 1659
[48]  14 Carlier D, Ménétrier M, Grey C, et al. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B, 2003, 67: 174103
[49]  15 Kim J, Middlemiss D S, Chernova N A, et al. Linking local environments and hyperfine shifts: A combined experimental and theoretical 31P and 7Li solid-state NMR study of paramagnetic Fe(Ⅲ) phosphates. J Am Chem Soc, 2010, 132: 16825-16840
[50]  17 Key B, Bhattacharyya R, Morcrette M, et al. Real-Time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc, 2009, 131: 9239-9249
[51]  19 Gerald Ⅱ R E, Johnson C S, Rathke J W, et al. 7Li NMR study of intercalated lithium in curved carbon lattices. J Power Sources, 2000, 89: 237-243
[52]  21 Armstrong A R, Dupre N, Paterson A J, et al. Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to- spinel transformation in LiMnO2. Chem Mater, 2004, 16: 3106-3118
[53]  23 Middlemiss D S, Ilott A J, Clément R J, et al. Density functional theory-based bond pathway decompositions of hyperfine shifts: Equipping solid-state NMR to characterize atomic environments in paramagnetic materials. Chem Mater, 2013, 25: 1723-1734
[54]  25 Castets A, Carlier D, Zhang Y, et al. Multinuclear NMR and DFT calculations on the LiFePO4· OH and FePO4· H2O homeotypic phases. J Phys Chem C, 2011, 115: 16234-16241
[55]  26 Zhang Y, Castets A, Carlier D, et al. Simulation of NMR Fermi contact shifts for Lithium battery materials: The need for an efficient hybrid functional approach. J Phys Chem C, 2012, 116: 17393-17402
[56]  28 Tucker M C, Doeff M M, Richardson T J, et al. Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: A 7Li MAS NMR and SQUID study. J Am Chem Soc, 2002, 124: 3832-3833
[57]  29 Verhoeven V, de Schepper I, Nachtegaal G, et al. Lithium dynamics in LiMn2O4 probed directly by two-dimensional 7Li NMR. Phys Rev Lett, 2001, 86: 4314-4317
[58]  30 Davis L J M, Ellis B L, Ramesh T N, et al. 6Li 1D EXSY NMR spectroscopy: A new tool for studying lithium dynamics in paramagnetic materials applied to monoclinic Li2VPO4F. J Phys Chem C, 2011, 115: 22603-22608
[59]  31 Cahill L, Iriyama Y, Nazar L, et al. Synthesis of Li4V(PO4) 2F2 and 6, 7Li NMR studies of its lithium ion dynamics. J Mater Chem, 2010, 20: 4340-4346
[60]  32 Davis L, Heinmaa I, Goward G. Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using 6Li VT and 2D exchange MAS NMR spectroscopy. Chem Mater, 2009, 22: 769-775
[61]  33 Cahill L S, Chapman R P, Britten J F, et al. 7Li NMR and two-dimensional exchange study oflithium dynamics in monoclinic Li3V2(PO4)3. J Phys Chem B, 2006, 110: 7171-7177
[62]  36 Siegel R, Hirschinger J, Carlier D, et al. 59Co and 6,7Li MAS NMR in polytypes O2 and O3 of LiCoO2. J Phys Chem B, 2001, 105: 4166-4174
[63]  43 Lee Y J, Grey C P. Determining the lithium local environments in the lithium manganates LiZn0.5Mn1.5O4 and Li2MnO3 by analysis of the 6Li MAS NMR spinning sideband manifolds. J Phys Chem B, 2002, 106: 3576-3582
[64]  44 Pan C, Lee Y J, Ammundsen B, et al. 6Li MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem Mater, 2002, 14: 2289-2299
[65]  45 Lee Y J, Grey C P. 6Li Magic angle spinning nuclear magnetic resonance study of the cathode materials Li1+xMn2-xO4-x the effect of local structure on the electrochemical properties. J Electrochem Soc, 2002, 149: A103-A114
[66]  47 Davis L J M, Heinmaa I, Goward G R. Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using 6Li VT and 2D exchange MAS NMR spectroscopy. Chem Mater, 2010, 22: 769-775
[67]  48 Makimura Y, Cahill L S, Iriyama Y, et al. Layered lithium vanadium fluorophosphate, Li5V(PO4)2F2 a 4 V class positive electrode material for lithium-ion batteries. Chem Mater, 2008, 20: 4240-4248
[68]  49 Davis L J M, Goward G R. Differentiating lithium ion hopping rates in vanadium phosphate versus vanadium fluorophosphate structures using 1D 6Li selective inversion NMR. J Phys Chem C, 2013, 117: 7981-7992
[69]  50 郝小罡, 刘子庚, 龚正良, 等. 锂离子电池正极材料Na3V2(PO4)2F3的原位XRD及固体核磁共振研究. 中国科学: 化学, 2012, 42: 38-46
[70]  53 Armstrong A R, Kuganathan N, Islam M S, et al. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc, 2011, 133: 13031-13035
[71]  54 Mali G, Sirisopanaporn C, Masquelier C, et al. Li2FeSiO4 polymorphs probed by 6Li MAS NMR and 57Fe M?ssbauer spectroscopy. Chem Mater, 2011, 23: 2735-2744
[72]  58 Yamakawa N, Jiang M, Key B, et al. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: A solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc, 2009, 131: 10525-10536
[73]  59 钟贵明. 固体核磁共振技术在电化学能源材料研究中的应用. 博士学位论文. 厦门: 厦门大学, 2013
[74]  60 Conard J, Estrade H. Résonance magnétique nucléaire du lithium interstitiel dans le graphite. Mater Sci Eng, 1977, 31: 173-176
[75]  61 Mori Y, Iriyama T, Hashimoto T, et al. Lithium doping/undoping in disordered coke carbons. J Power Sources, 1995, 56: 205-208
[76]  62 Tatsumi K, Kawamura T, Higuchi S, et al. Anode characteristics of non-graphitizable carbon fibers for rechargeable lithium-ion batteries. J Power Sources, 1997, 68: 263-266
[77]  63 Nakagavva Y, Wang S, Matsumura Y, et al. 7Li-NMR study of lithium charged in carbon electrode. Synth Met, 1997, 85: 1363-1364
[78]  64 Yoshio M, Wang H, Fukuda K, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc, 2000, 147: 1245-1250
[79]  67 Hayes S E, Guidotti R A, Even W R, et al. 7Li solid-state nuclear magnetic resonance as a probe of lithium species in microporous carbon anodes. J Phys Chem A, 2003, 107: 3866-3876
[80]  68 Yamazaki S, Hashimoto T, Iriyama T, et al. Study of the states of Li doped in carbons as an anode of LiB by 7Li NMR spectroscopy. J Mol Struct, 1998, 441: 165-171
[81]  71 Tatsumi K, Conard J, Nakahara M, et al. Low temperature 7Li-NMR investigations on lithium inserted into carbon anodes for rechargeable lithium-ion cells. J Power Sources, 1999, 81-82: 397-400
[82]  72 Saito Y, Kataoka H, Nakai K, et al. Determination of diffusion rate and accommodation state of Li in mesophase carbon for anode materials by NMR spectroscopy. J Phys Chem B, 2004, 108: 4008-4012
[83]  73 Fujimoto H, Mabuchi A, Tokumitsu K, et al. 7Li nuclear magnetic resonance studies of hard carbon and graphite/hard carbon hybrid anode for Li-ion battery. J Power Sources, 2011, 196: 1365-1370
[84]  74 Gerald, Sanchez J, Johnson C S, et al. In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector. J Phys: Condens Matter, 2001, 13: 8269
[85]  75 Letellier M, Chevallier F, Béguin F, et al. The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons. J Phys Chem Solids, 2004, 65: 245-251
[86]  76 Letellier M, Chevallier F, Béguin F. In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite. J Phys Chem Solids, 2006, 67: 1228-1232
[87]  79 Key B, Morcrette M, Tarascon J-M, et al. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: Understanding the (de)lithiation mechanisms. J Am Ceram Soc, 2011, 133: 503-512
[88]  83 Kazuhiko F, Keizou O, Yasushi M, et al. Solid 7Li-NMR and in situ XRD studies of the insertion reaction of lithium with tin oxide and tin-based amorphous composite oxide. J Phys: Condens Matter, 2001, 13: 3519
[89]  85 Wilkening M, Iwaniak W, Heine J, et al. Microscopic Li self-diffusion parameters in the lithiated anode material Li4+xTi5O12 (0 < x < 3) measured by 7Li solid state NMR. Phys Chem Chem Phys, 2007, 9: 6199-6202
[90]  87 Kuhn A, Narayanan S, Spencer L, et al. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys Rev B, 2011, 83: 094302
[91]  88 Kuhn A, Epp V, Schmidt G, et al. Spin-alignment echo NMR: Probing Li+ hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure. J Phys: Condens Matter, 2012, 24: 035901
[92]  89 Arbi K, Lazarraga M G, Ben Hassen Chehimi D, et al. Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem Mater, 2003, 16: 255-262
[93]  90 Arbi K, Mandal S, Rojo J M, et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem Mater, 2002, 14: 1091-1097
[94]  91 Arbi K, Ayadi-Trabelsi M, Sanz J. Li mobility in triclinic and rhombohedral phases of the Nasicon-type compound LiZr2(PO4)3 as deduced from NMR spectroscopy. J Mater Chem, 2002, 12: 2985-2990
[95]  92 Ngai K L. Analysis of NMR and conductivity-relaxation measurements in glassy Li2S-SiS2 fast-ion conductors. Phys Rev B, 1993, 48: 13481-13485
[96]  93 Thangadurai V, Weppner W. Li6ALa2Nb2O12 (A= Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure. J Am Ceram Soc, 2005, 88: 411-418
[97]  94 Wilkening M, Kuhn A, Heitjans P. Atomic-scale measurement of ultraslow Li motions in glassy LiAlSi2O6 by two-time 6Li spin-alignment echo NMR correlation spectroscopy. Phys Rev B, 2008, 78: 054303
[98]  95 Buschmann H, D?lle J, Berendts S, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys, 2011, 13: 19378-19392
[99]  96 Wang Y, Guo X, Greenbaum S, et al. Solid electrolyte interphase formation on lithium-ion electrodes: A 7Li nuclear magnetic resonance study. Electrochem Solid-State Lett, 2001, 4: A68-A70
[100]  98 Meyer B M, Leifer N, Sakamoto S, et al. High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. Electrochem Solid-State Lett, 2005, 8: A145-A148
[101]  100 Leifer N, Smart M, Prakash G, et al. 13C solid state NMR suggests unusual breakdown products in SEI formation on lithium ion electrodes. J Electrochem Soc, 2011, 158: A471-A480
[102]  101 Chen S, Zhong G, Cao X, et al. An approach to probe solid electrolyte interface on Si anode by 31P MAS NMR. ECS Electrochem Lett, 2013, 2: A115-A117
[103]  103 Chandrashekar S, Trease N M, Chang H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat Mater, 2012, 11: 311-315
[104]  104 Tang J A, Zhong G, Dugar S, et al. Solid-state STRAFI NMR probe for material imaging of quadrupolar nuclei. J Magn Reson, 2012, 225: 93-101

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133