全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

钼基氧化物锂离子电池负极材料研究进展

DOI: 10.1360/972013-797, PP. 3254-3273

Keywords: 锂离子电池,钼基氧化物,负极,纳米结构,复合材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

钼基氧化物负极材料结构多变、种类丰富、理论比能量高,有望成为下一代高性能的锂离子电池负极材料.本文简要介绍了钼基氧化物材料(二氧化钼、三氧化钼、三元含钼氧盐)作为锂离子电池负极材料的研究进展.总结了构筑钼基氧化物纳米结构和钼基氧化物复合材料能够提高其作为锂离子电池负极材料的电化学性能.同时,介绍了本研究组在设计合成二氧化钼纳米结构材料和纳米复合材料及开发新型三元钼基氧化物作为锂离子电池负极材料方面的研究进展.开发比容量高、循环性能和倍率性能好的钼基氧化物负极材料仍将是科研工作者面临的重大挑战.

References

[1]  1 Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652-657
[2]  3 Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci, 2011, 4: 2682-2699
[3]  5 Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: E170-E192
[4]  7 Kang E, Jung Y S, Cavanagh A S, et al. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater, 2011, 21: 2430-2438
[5]  9 Zhang W M, Wu X L, Hu J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater, 2008, 18: 3941-3946
[6]  10 Xiong Q Q, Tu J P, Lu Y, et al. Synthesis of hierarchical hollow-structured single-crystalline magnetite (Fe3O4) microspheres: The highly powerful storage versus lithium as an anode for lithium ion batteries. J Phys Chem C, 2012, 116: 6495-6502
[7]  11 Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc, 2012, 134: 17388-17391
[8]  13 Sun Y M, Hu X L, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater, 2013, 23: 2436-2444
[9]  14 Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4: 3187-3194
[10]  16 Das B, Reddy M V, Krishnamoorthi C, et al. Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochim Acta, 2009, 54: 3360-3373
[11]  17 Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc, 2004, 151: A1878-A1885
[12]  18 Leroux F, Nazar L F. Uptake of lithium by layered molybdenum oxide and its tin exchanged derivatives: High volumetric capacity materials. Solid State Ion, 2000, 133: 37-50
[13]  19 Leroux F, Goward G R, Power W P, et al. Understanding the nature of low-potential Li uptake into high volumetric capacity molybdenum oxides. Electrochem Solid-State Lett, 1998, 1: 255-258
[14]  20 Meduri P, Clark E, Kim J H, et al. MoO3-x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett, 2012, 12: 1784-1788
[15]  21 Zhao X Y, Cao M H, Hu C W. Thermal oxidation synthesis hollow MoO3 microspheres and their applications in lithium storage and gas-sensing. Mater Res Bull, 2013, 48: 2289-2295
[16]  22 Lee S H, Kim Y H, Deshpande R, et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv Mater, 2008, 20, 3627-3632
[17]  24 Tao T, Glushenkov A M, Zhang C F, et al. MoO3 nanoparticles dispersed uniformly in carbon matrix: A high capacity composite anode for Li-ion batteries. J Mater Chem, 2011, 21: 9350-9355
[18]  25 Hassan M F, Guo Z P, Chen Z. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J Power Sources, 2010, 195: 2372-2376
[19]  31 Auborn J J, Barberio Y L. Lithium intercalation cells without metallic lithium. J Electrochem Soc, 1987, 134: 638-641
[20]  36 Liu J, Tang S S, Lu Y K, et al. Synthesis of Mo2N nanolayer coating MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy Environ Sci, 2013, doi: 10.1039/C3EE41006D
[21]  37 Shi Y F, Guo B K, Corr S A, et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett, 2009, 9: 4215-4220
[22]  40 Zhao X Y, Cao M H, Liu B, et al. Interconnected core-shell MoO2 microcapsules with nanorod-assembled shells as high-performance lithium-ion battery anodes. J Mater Chem, 2012, 22: 13334-13340
[23]  43 Zeng L X, Zheng C, Deng C L, et al. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries. ACS Appl Mater Interfaces, 2013, 5: 2182-2187
[24]  44 Liu B, Zhao X Y, Tian Y, et al. A simple reduction process to synthesize MoO2/C composites with cage-like structure for high- performance lithium-ion batteries. Phys Chem Chem Phys, 2013, 15: 8831-8837
[25]  45 Yoon S, Jung K N, Jin C S, et al. Synthesis of nitrided MoO2 and its application as anode materials for lithium-ion batteries. J Alloys Comp, 2012, 536: 179-183
[26]  47 Xu Y, Yi R, Yuan B, et al. High capacity MoO2/graphite oxide composite anode for lithium-ion batteries. J Phys Chem Lett, 2012, 3: 309-314
[27]  49 Seng K H, Guo Z P, Chen Z X, et al. Facile synthesis of graphene-molybdenum dioxide and its lithium storage properties. J Mater Chem, 2012, 22: 16072-16077
[28]  50 Lei Y Z, Hu J C, Liu H W, et al. Template-free synthesis of hollow core-shell MoO2 microspheres with high lithium-ion storage capacity. Mater Lett, 2012, 68: 82-85
[29]  66 Sharma N, Shaju K M, Subba Rao G V, et al. Carbon-coated nanophase CaMoO4 as anode material for Li ion batteries. Chem Mater, 2004, 16: 504-512
[30]  67 Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci, 2011, 4: 269-284
[31]  68 Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366-377
[32]  70 Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater, 2006, 5: 567-573
[33]  71 Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol, 2008, 3: 31-35
[34]  73 Kim J, Manthiram A. A manganese oxyiodide cathode for rechargeable lithium batteries. Nature, 1997, 390: 265-267
[35]  74 Nam K T, Kim D W, Yoon P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science, 2006, 312: 885-888
[36]  76 Huang X H, Tu J P, Zhang C Q, et al. Spherical NiO-C composite for anode material of lithium ion batteries. Electrochim Acta, 2007, 52: 4177-4181
[37]  77 Hassan M F, Rahman M M, Guo Z P, et al. SnO2-NiO-C nanocomposite as a high capacity anode material for lithium-ion batteries. J Mater Chem, 2010, 20: 9707-9712
[38]  79 Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater, 2010, 9: 353-358
[39]  84 Volkmer D, Tugulu S, Fricke M, et al. Morphosynthesis of star-shaped titania-silica shells. Angew Chem Int Ed, 2003, 42: 58-61
[40]  85 Xu A W, Antonietti M, C?lfen H, et al. Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv Funct Mater, 2006, 16: 903-908
[41]  87 Mann S. The chemistry of form. Angew Chem Int Ed, 2000, 39: 3392-3406
[42]  88 Ariga K, Hill J P, Lee M V, et al. Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater, 2008, 9: 014109
[43]  89 Ariga K, Hu X L, Mandal S, et al. By what means should nanoscaled materials be constructed: Molecule, medium, or human? Nanoscale, 2010, 2: 198-214
[44]  91 Ji Q M, Yoon S B, Hill J P, et al. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J Am Chem Soc, 2009, 131: 4220-4221
[45]  92 Sun Y M, Hu X L, Yu J C, et al. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ Sci, 2011, 4: 2870-2877
[46]  94 William H S. A survey of enzyme coupling techniques. Method Enzymol, 1987, 135: 30-65
[47]  97 Sun Y M, Hu X L, Luo W, et al. Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. J Mater Chem, 2012, 22: 425-431
[48]  98 Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66-69
[49]  99 Zhang Y, Suenaga K, Colliex C, et al. Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science, 1998, 281: 973-975
[50]  100 Qin Y, Wang X D, Wang Z L, et al. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2004, 451: 809-813
[51]  101 Li D, Xia Y N. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16: 1151-1170
[52]  105 Luo W, Hu X L, Sun Y M, et al. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys Chem Chem Phys, 2011, 13: 16735-16740
[53]  106 Zhou G M, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater, 2010, 22: 5306-5313
[54]  108 Sun Y M, Hu X L, Luo W, et al. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high- performance anode material for lithium-ion batteries. ACS Nano, 2011, 5: 7100-7107
[55]  111 Hyder M N, Lee S W, Cebeci F C, et al. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. ACS Nano, 2011, 5: 8552-8561
[56]  112 Xia F F, Hu X L, Sun Y M, et al. Layer-by-layer assembled MoO2-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Nanoscale, 2012, 4: 4707-4711
[57]  114 Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials. Energy Environ Sci, 2011, 4: 1113-1132
[58]  115 Chang K, Chen W X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun, 2011, 47: 4252-4254
[59]  116 Seng K H, Guo Z P, Chen Z X, et al. SnSb/graphene composite as anode materials for lithium ion batteries. Ad Sci Lett, 2011, 4: 18-23
[60]  117 Sun Y M, Hu X L, Luo W, et al. Hierarchical self-assembly of Mn2Mo3O8-graphene nanostructures and their enhanced lithium-storage properties. J Mater Chem, 2011, 21: 17229-17235
[61]  118 Mai L Q, Yang F, Zhao Y L, et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun, 2011, 2: 381
[62]  119 Sun Y M, Hu X L, Luo W, et al. Self-assembly of hybrid Fe2Mo3O8-reduced graphene oxide nanosheets with enhanced lithium storage properties. J Mater Chem A, 2013, 1: 4468-4474
[63]  2 Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458: 190-193
[64]  4 Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, doi: 10.1021/cr3001884
[65]  6 Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499
[66]  8 Guo J, Liu Q, Wang C, et al. Interdispersed amorphous MnOx-carbon nanocomposites with superior electrochemical performance as lithium-storage material. Adv Funct Mater, 2012, 22: 803-811
[67]  12 Zhou L, Zhao D, Lou X W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater, 2012, 24: 745-748
[68]  15 Wang H L, Cui L F, Yang Y A, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc, 2010, 132: 13978-13980
[69]  23 Feng C Q, Gao H, Zhang C F, et al. Synthesis and electrochemical properties of MoO3/C nanocomposite. Electrochim Acta, 2013, 93: 101-106
[70]  26 Jung Y S, Lee S, Ahn D, et al. Electrochemical reactivity of ball-milled MoO3-y as anode materials for lithium-ion batteries. J Power Sources, 2009, 188: 286-291
[71]  27 Rogers D B, Shannon R D, Sleight A W, et al. Crystal chemistry of metal dioxides with rutile-related structures. Inorg Chem, 1969, 8: 841-849
[72]  28 Magnéli A, Andersson G. On the MoO2 structure type. Acta Chem Scand, 1955, 9: 1378-1381
[73]  29 Murphy D W, Di Salvo F J, Carides J N, et al. Topochemical reactions of rutile related structures with lithium. Mater Res Bull, 1978, 13: 1395-1402
[74]  30 Dahn J R, McKinnon W R. Structure and electrochemistry of LixMoO2. Solid State Ion, 1987, 23: 1-7
[75]  32 Ku J H, Jung Y S, Lee K T, et al. Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries. J Electrochem Soc, 2009, 156: A688-A693
[76]  33 Liu Y L, Zhang H, Ouyang P, et al. One-pot hydrothermal synthesized MoO2 with high reversible capacity for anode application in lithium ion battery. Electrochim Acta, 2013, 102: 429-435
[77]  34 Zhou L, Wu H B, Wang Z Y, et al. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl Mater Interface, 2011, 3: 4853-4857
[78]  35 Wang Z Y, Chen J S, Zhu T, et al. One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chem Commun, 2010, 46: 6906-6908
[79]  38 Fang X P, Guo B K, Shi Y F, et al. Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping. Nanoscale, 2012, 4: 1541-1544
[80]  39 Zhang X F, Song X X, Gao S, et al. Facile synthesis of yolk-shell MoO2 microspheres with excellent electrochemical performance as a Li-ion battery anode. J Mater Chem A, 2013, 1: 6858-6864
[81]  41 Gao Q S, Yang L C, Lu X C, et al. Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. J Mater Chem, 2010, 20: 2807-2812
[82]  42 Bhaskar A, Deepa M, Narasinga Rao T. MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. ACS Appl Mater Interfaces, 2013, 5: 2555-2566
[83]  46 Yang L C, Liu L L, Zhu Y S, et al. Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J Mater Chem, 2012, 22: 13148-13152
[84]  48 Tang Q W, Shan Z Q, Wang L, et al. MoO2-graphene nanocomposite as anode material for lithium-ion batteries. Electrochim Acta, 2012, 79: 148-153
[85]  51 Guo B K, Fang X P, Liu B, et al. Synthesis and lithium storage mechanism of ultrafine MoO2 nanorods. Chem Mater, 2012, 24: 457-463
[86]  52 Bhaskar A, Deepa M, Rao T N, et al. Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries. J Power Sources, 2012, 216: 169-178
[87]  53 Yoon S, Manthiram A. Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries. J Mater Chem, 2011, 21: 4082-4085
[88]  54 Zhang H J, Wu T H, Wang K X, et al. Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. J Mater Chem A, 2013, 1: 12038-12043
[89]  55 Yang L C, Gao Q S, Zhang Y H, et al. Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery. Electrochem Commun, 2008, 10: 118-122
[90]  56 Yang L C, Gao Q S, Tang Y, et al. MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. J Power Sources, 2008, 179: 357-360
[91]  57 Sharma Y, Sharma N, Subba Rao G V, et al. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater, 2007, 17: 2855-2861
[92]  58 Xiao W, Chen J S, Li C M, et al. Synthesis, characterization, and lithium storage capabitity of AMoO4 (A=Ni, Co) nanorods. Chem Mater, 2010, 22: 746-754
[93]  59 Wang Y, Cao G Z. Synthesis and electrochemical properties of InVO4 nanotube arrays. J Mater Chem, 2007, 17: 894-899
[94]  60 Das B, Reddy M V, Subba Rao G V, et al. Synthesis of Mo-cluster compound, LiHoMo3O8 by carbothermal reduction and its reactivity towards Li. J Solid State Electrochem, 2008, 12: 953-959
[95]  61 Leyzerovich N N, Bramnik K G, Buhrmester T, et al. Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe). J Power Sources, 2004, 127: 76-84
[96]  62 Komaba S, Kumagai N, Kumagai R, et al. Molybdenum oxides synthesized by hydrothermal treatment of A2MoO4 (A=Li, Na, K) and electrochemical lithium intercalation into the oxides. Solid State Ion, 2002, 152: 319-326
[97]  63 Kim S S, Ogura S, Ikuta H, et al. Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery. Solid State Ion, 2002, 146: 249-256
[98]  64 Cherian C T, Reddy M V, Haur S C, et al. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 5: 918-923
[99]  65 Kim S S, Ogura S, Ikuta H, et al. Synthesis of MnMoO4 as high capacity anode material for Li secondary battery. Chem Lett, 2001, 30: 760-761
[100]  69 Hu Y S, Guo Y G, Sigle W, et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat Mater, 2006, 5: 713-717
[101]  72 Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394: 456-458
[102]  75 Huang X H, Tu J P, Zhang C Q, et al. Net-structured NiO-C nanocomposite as Li-intercalation electrode material. Electrochem Commun, 2007, 9: 1180-1184
[103]  78 Koziej D, Rossell M D, Ludi B, et al. Interplay between size and crystal structure of molybdenum dioxide nanoparticles—Synthesis, growth mechanism, and electrochemical performance. Small, 2011, 7: 377-387
[104]  80 Chen J S, Tan Y L, Li C M, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc, 2010, 132: 6124-6130
[105]  81 Mann S, Ozin G A. Synthesis of inorganic materials with complex form. Nature, 1996, 382: 313-318
[106]  82 Yang H, Coombs N, Ozin G A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 1997, 386: 692-695
[107]  83 Johnson S A, Ollivier P J, Mallouk T E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999, 283: 963-965
[108]  86 Xu A W, Ma Y R, Colfen H. Biomimetic mineralization. J Mater Chem, 2007, 17: 415-449
[109]  90 Ji Q M, Acharya S, Hill J P, et al. Hierarchic nanostructure for auto-modulation of material release: Mesoporous nanocompartment films. Adv Funct Mater, 2009, 19: 1792-1799
[110]  93 Albayrak N, Yang S T. Immobilization of Aspergillus oryzae β-galactosidase on tosylated cotton cloth. Enzyme Microb Technol, 2002, 31: 371-383
[111]  95 Ji X L, Herle P S, Rho Y, et al. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chem Mater, 2007, 19: 374-383
[112]  96 Wang X L, Han W Q, Chen H Y, et al. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J Am Chem Soc, 2011, 133: 20692-20695
[113]  102 Mai L Q, Yang F, Zhao Y L, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett, 2010, 10: 4750-4755
[114]  103 Ostermann R, Li D, Yin Y D, et al. V2O5 Nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett, 2006, 6: 1297-1302
[115]  104 Cherian C T, Sundaramurthy J, Kalaivani M, et al. Electrospun a-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem, 2012, 22: 12198-12204
[116]  107 Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ Sci, 2011, 4: 668-674
[117]  109 Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett, 2008, 9: 72-75
[118]  110 Cassagneau T, Mallouk T E, Fendler J H. Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J Am Chem Soc, 1998, 120: 7848-7859
[119]  113 Wang D H, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 2009, 3: 907-914

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133