1 Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652-657
[2]
3 Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci, 2011, 4: 2682-2699
[3]
5 Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: E170-E192
[4]
7 Kang E, Jung Y S, Cavanagh A S, et al. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater, 2011, 21: 2430-2438
[5]
9 Zhang W M, Wu X L, Hu J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater, 2008, 18: 3941-3946
[6]
10 Xiong Q Q, Tu J P, Lu Y, et al. Synthesis of hierarchical hollow-structured single-crystalline magnetite (Fe3O4) microspheres: The highly powerful storage versus lithium as an anode for lithium ion batteries. J Phys Chem C, 2012, 116: 6495-6502
[7]
11 Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc, 2012, 134: 17388-17391
[8]
13 Sun Y M, Hu X L, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater, 2013, 23: 2436-2444
[9]
14 Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4: 3187-3194
[10]
16 Das B, Reddy M V, Krishnamoorthi C, et al. Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochim Acta, 2009, 54: 3360-3373
[11]
17 Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc, 2004, 151: A1878-A1885
[12]
18 Leroux F, Nazar L F. Uptake of lithium by layered molybdenum oxide and its tin exchanged derivatives: High volumetric capacity materials. Solid State Ion, 2000, 133: 37-50
[13]
19 Leroux F, Goward G R, Power W P, et al. Understanding the nature of low-potential Li uptake into high volumetric capacity molybdenum oxides. Electrochem Solid-State Lett, 1998, 1: 255-258
[14]
20 Meduri P, Clark E, Kim J H, et al. MoO3-x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett, 2012, 12: 1784-1788
[15]
21 Zhao X Y, Cao M H, Hu C W. Thermal oxidation synthesis hollow MoO3 microspheres and their applications in lithium storage and gas-sensing. Mater Res Bull, 2013, 48: 2289-2295
[16]
22 Lee S H, Kim Y H, Deshpande R, et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv Mater, 2008, 20, 3627-3632
[17]
24 Tao T, Glushenkov A M, Zhang C F, et al. MoO3 nanoparticles dispersed uniformly in carbon matrix: A high capacity composite anode for Li-ion batteries. J Mater Chem, 2011, 21: 9350-9355
[18]
25 Hassan M F, Guo Z P, Chen Z. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J Power Sources, 2010, 195: 2372-2376
[19]
31 Auborn J J, Barberio Y L. Lithium intercalation cells without metallic lithium. J Electrochem Soc, 1987, 134: 638-641
[20]
36 Liu J, Tang S S, Lu Y K, et al. Synthesis of Mo2N nanolayer coating MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy Environ Sci, 2013, doi: 10.1039/C3EE41006D
[21]
37 Shi Y F, Guo B K, Corr S A, et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett, 2009, 9: 4215-4220
[22]
40 Zhao X Y, Cao M H, Liu B, et al. Interconnected core-shell MoO2 microcapsules with nanorod-assembled shells as high-performance lithium-ion battery anodes. J Mater Chem, 2012, 22: 13334-13340
[23]
43 Zeng L X, Zheng C, Deng C L, et al. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries. ACS Appl Mater Interfaces, 2013, 5: 2182-2187
[24]
44 Liu B, Zhao X Y, Tian Y, et al. A simple reduction process to synthesize MoO2/C composites with cage-like structure for high- performance lithium-ion batteries. Phys Chem Chem Phys, 2013, 15: 8831-8837
[25]
45 Yoon S, Jung K N, Jin C S, et al. Synthesis of nitrided MoO2 and its application as anode materials for lithium-ion batteries. J Alloys Comp, 2012, 536: 179-183
[26]
47 Xu Y, Yi R, Yuan B, et al. High capacity MoO2/graphite oxide composite anode for lithium-ion batteries. J Phys Chem Lett, 2012, 3: 309-314
[27]
49 Seng K H, Guo Z P, Chen Z X, et al. Facile synthesis of graphene-molybdenum dioxide and its lithium storage properties. J Mater Chem, 2012, 22: 16072-16077
[28]
50 Lei Y Z, Hu J C, Liu H W, et al. Template-free synthesis of hollow core-shell MoO2 microspheres with high lithium-ion storage capacity. Mater Lett, 2012, 68: 82-85
[29]
66 Sharma N, Shaju K M, Subba Rao G V, et al. Carbon-coated nanophase CaMoO4 as anode material for Li ion batteries. Chem Mater, 2004, 16: 504-512
[30]
67 Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci, 2011, 4: 269-284
[31]
68 Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366-377
[32]
70 Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater, 2006, 5: 567-573
[33]
71 Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol, 2008, 3: 31-35
[34]
73 Kim J, Manthiram A. A manganese oxyiodide cathode for rechargeable lithium batteries. Nature, 1997, 390: 265-267
[35]
74 Nam K T, Kim D W, Yoon P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science, 2006, 312: 885-888
[36]
76 Huang X H, Tu J P, Zhang C Q, et al. Spherical NiO-C composite for anode material of lithium ion batteries. Electrochim Acta, 2007, 52: 4177-4181
[37]
77 Hassan M F, Rahman M M, Guo Z P, et al. SnO2-NiO-C nanocomposite as a high capacity anode material for lithium-ion batteries. J Mater Chem, 2010, 20: 9707-9712
[38]
79 Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater, 2010, 9: 353-358
[39]
84 Volkmer D, Tugulu S, Fricke M, et al. Morphosynthesis of star-shaped titania-silica shells. Angew Chem Int Ed, 2003, 42: 58-61
[40]
85 Xu A W, Antonietti M, C?lfen H, et al. Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv Funct Mater, 2006, 16: 903-908
[41]
87 Mann S. The chemistry of form. Angew Chem Int Ed, 2000, 39: 3392-3406
[42]
88 Ariga K, Hill J P, Lee M V, et al. Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater, 2008, 9: 014109
[43]
89 Ariga K, Hu X L, Mandal S, et al. By what means should nanoscaled materials be constructed: Molecule, medium, or human? Nanoscale, 2010, 2: 198-214
[44]
91 Ji Q M, Yoon S B, Hill J P, et al. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J Am Chem Soc, 2009, 131: 4220-4221
[45]
92 Sun Y M, Hu X L, Yu J C, et al. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ Sci, 2011, 4: 2870-2877
[46]
94 William H S. A survey of enzyme coupling techniques. Method Enzymol, 1987, 135: 30-65
[47]
97 Sun Y M, Hu X L, Luo W, et al. Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. J Mater Chem, 2012, 22: 425-431
[48]
98 Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66-69
[49]
99 Zhang Y, Suenaga K, Colliex C, et al. Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science, 1998, 281: 973-975
[50]
100 Qin Y, Wang X D, Wang Z L, et al. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2004, 451: 809-813
[51]
101 Li D, Xia Y N. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16: 1151-1170
[52]
105 Luo W, Hu X L, Sun Y M, et al. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys Chem Chem Phys, 2011, 13: 16735-16740
[53]
106 Zhou G M, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater, 2010, 22: 5306-5313
[54]
108 Sun Y M, Hu X L, Luo W, et al. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high- performance anode material for lithium-ion batteries. ACS Nano, 2011, 5: 7100-7107
[55]
111 Hyder M N, Lee S W, Cebeci F C, et al. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. ACS Nano, 2011, 5: 8552-8561
[56]
112 Xia F F, Hu X L, Sun Y M, et al. Layer-by-layer assembled MoO2-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Nanoscale, 2012, 4: 4707-4711
[57]
114 Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials. Energy Environ Sci, 2011, 4: 1113-1132
[58]
115 Chang K, Chen W X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun, 2011, 47: 4252-4254
[59]
116 Seng K H, Guo Z P, Chen Z X, et al. SnSb/graphene composite as anode materials for lithium ion batteries. Ad Sci Lett, 2011, 4: 18-23
[60]
117 Sun Y M, Hu X L, Luo W, et al. Hierarchical self-assembly of Mn2Mo3O8-graphene nanostructures and their enhanced lithium-storage properties. J Mater Chem, 2011, 21: 17229-17235
[61]
118 Mai L Q, Yang F, Zhao Y L, et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun, 2011, 2: 381
[62]
119 Sun Y M, Hu X L, Luo W, et al. Self-assembly of hybrid Fe2Mo3O8-reduced graphene oxide nanosheets with enhanced lithium storage properties. J Mater Chem A, 2013, 1: 4468-4474
[63]
2 Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458: 190-193
[64]
4 Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, doi: 10.1021/cr3001884
[65]
6 Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499
[66]
8 Guo J, Liu Q, Wang C, et al. Interdispersed amorphous MnOx-carbon nanocomposites with superior electrochemical performance as lithium-storage material. Adv Funct Mater, 2012, 22: 803-811
[67]
12 Zhou L, Zhao D, Lou X W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater, 2012, 24: 745-748
[68]
15 Wang H L, Cui L F, Yang Y A, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc, 2010, 132: 13978-13980
[69]
23 Feng C Q, Gao H, Zhang C F, et al. Synthesis and electrochemical properties of MoO3/C nanocomposite. Electrochim Acta, 2013, 93: 101-106
[70]
26 Jung Y S, Lee S, Ahn D, et al. Electrochemical reactivity of ball-milled MoO3-y as anode materials for lithium-ion batteries. J Power Sources, 2009, 188: 286-291
[71]
27 Rogers D B, Shannon R D, Sleight A W, et al. Crystal chemistry of metal dioxides with rutile-related structures. Inorg Chem, 1969, 8: 841-849
[72]
28 Magnéli A, Andersson G. On the MoO2 structure type. Acta Chem Scand, 1955, 9: 1378-1381
[73]
29 Murphy D W, Di Salvo F J, Carides J N, et al. Topochemical reactions of rutile related structures with lithium. Mater Res Bull, 1978, 13: 1395-1402
[74]
30 Dahn J R, McKinnon W R. Structure and electrochemistry of LixMoO2. Solid State Ion, 1987, 23: 1-7
[75]
32 Ku J H, Jung Y S, Lee K T, et al. Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries. J Electrochem Soc, 2009, 156: A688-A693
[76]
33 Liu Y L, Zhang H, Ouyang P, et al. One-pot hydrothermal synthesized MoO2 with high reversible capacity for anode application in lithium ion battery. Electrochim Acta, 2013, 102: 429-435
[77]
34 Zhou L, Wu H B, Wang Z Y, et al. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl Mater Interface, 2011, 3: 4853-4857
[78]
35 Wang Z Y, Chen J S, Zhu T, et al. One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chem Commun, 2010, 46: 6906-6908
[79]
38 Fang X P, Guo B K, Shi Y F, et al. Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping. Nanoscale, 2012, 4: 1541-1544
[80]
39 Zhang X F, Song X X, Gao S, et al. Facile synthesis of yolk-shell MoO2 microspheres with excellent electrochemical performance as a Li-ion battery anode. J Mater Chem A, 2013, 1: 6858-6864
[81]
41 Gao Q S, Yang L C, Lu X C, et al. Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. J Mater Chem, 2010, 20: 2807-2812
[82]
42 Bhaskar A, Deepa M, Narasinga Rao T. MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. ACS Appl Mater Interfaces, 2013, 5: 2555-2566
[83]
46 Yang L C, Liu L L, Zhu Y S, et al. Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J Mater Chem, 2012, 22: 13148-13152
[84]
48 Tang Q W, Shan Z Q, Wang L, et al. MoO2-graphene nanocomposite as anode material for lithium-ion batteries. Electrochim Acta, 2012, 79: 148-153
[85]
51 Guo B K, Fang X P, Liu B, et al. Synthesis and lithium storage mechanism of ultrafine MoO2 nanorods. Chem Mater, 2012, 24: 457-463
[86]
52 Bhaskar A, Deepa M, Rao T N, et al. Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries. J Power Sources, 2012, 216: 169-178
[87]
53 Yoon S, Manthiram A. Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries. J Mater Chem, 2011, 21: 4082-4085
[88]
54 Zhang H J, Wu T H, Wang K X, et al. Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. J Mater Chem A, 2013, 1: 12038-12043
[89]
55 Yang L C, Gao Q S, Zhang Y H, et al. Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery. Electrochem Commun, 2008, 10: 118-122
[90]
56 Yang L C, Gao Q S, Tang Y, et al. MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. J Power Sources, 2008, 179: 357-360
[91]
57 Sharma Y, Sharma N, Subba Rao G V, et al. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater, 2007, 17: 2855-2861
[92]
58 Xiao W, Chen J S, Li C M, et al. Synthesis, characterization, and lithium storage capabitity of AMoO4 (A=Ni, Co) nanorods. Chem Mater, 2010, 22: 746-754
[93]
59 Wang Y, Cao G Z. Synthesis and electrochemical properties of InVO4 nanotube arrays. J Mater Chem, 2007, 17: 894-899
[94]
60 Das B, Reddy M V, Subba Rao G V, et al. Synthesis of Mo-cluster compound, LiHoMo3O8 by carbothermal reduction and its reactivity towards Li. J Solid State Electrochem, 2008, 12: 953-959
[95]
61 Leyzerovich N N, Bramnik K G, Buhrmester T, et al. Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe). J Power Sources, 2004, 127: 76-84
[96]
62 Komaba S, Kumagai N, Kumagai R, et al. Molybdenum oxides synthesized by hydrothermal treatment of A2MoO4 (A=Li, Na, K) and electrochemical lithium intercalation into the oxides. Solid State Ion, 2002, 152: 319-326
[97]
63 Kim S S, Ogura S, Ikuta H, et al. Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery. Solid State Ion, 2002, 146: 249-256
[98]
64 Cherian C T, Reddy M V, Haur S C, et al. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 5: 918-923
[99]
65 Kim S S, Ogura S, Ikuta H, et al. Synthesis of MnMoO4 as high capacity anode material for Li secondary battery. Chem Lett, 2001, 30: 760-761
[100]
69 Hu Y S, Guo Y G, Sigle W, et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat Mater, 2006, 5: 713-717
[101]
72 Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394: 456-458
[102]
75 Huang X H, Tu J P, Zhang C Q, et al. Net-structured NiO-C nanocomposite as Li-intercalation electrode material. Electrochem Commun, 2007, 9: 1180-1184
[103]
78 Koziej D, Rossell M D, Ludi B, et al. Interplay between size and crystal structure of molybdenum dioxide nanoparticles—Synthesis, growth mechanism, and electrochemical performance. Small, 2011, 7: 377-387
[104]
80 Chen J S, Tan Y L, Li C M, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc, 2010, 132: 6124-6130
[105]
81 Mann S, Ozin G A. Synthesis of inorganic materials with complex form. Nature, 1996, 382: 313-318
[106]
82 Yang H, Coombs N, Ozin G A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 1997, 386: 692-695
[107]
83 Johnson S A, Ollivier P J, Mallouk T E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999, 283: 963-965
[108]
86 Xu A W, Ma Y R, Colfen H. Biomimetic mineralization. J Mater Chem, 2007, 17: 415-449
[109]
90 Ji Q M, Acharya S, Hill J P, et al. Hierarchic nanostructure for auto-modulation of material release: Mesoporous nanocompartment films. Adv Funct Mater, 2009, 19: 1792-1799
[110]
93 Albayrak N, Yang S T. Immobilization of Aspergillus oryzae β-galactosidase on tosylated cotton cloth. Enzyme Microb Technol, 2002, 31: 371-383
[111]
95 Ji X L, Herle P S, Rho Y, et al. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chem Mater, 2007, 19: 374-383
[112]
96 Wang X L, Han W Q, Chen H Y, et al. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J Am Chem Soc, 2011, 133: 20692-20695
[113]
102 Mai L Q, Yang F, Zhao Y L, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett, 2010, 10: 4750-4755
[114]
103 Ostermann R, Li D, Yin Y D, et al. V2O5 Nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett, 2006, 6: 1297-1302
[115]
104 Cherian C T, Sundaramurthy J, Kalaivani M, et al. Electrospun a-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem, 2012, 22: 12198-12204
[116]
107 Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ Sci, 2011, 4: 668-674
[117]
109 Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett, 2008, 9: 72-75
[118]
110 Cassagneau T, Mallouk T E, Fendler J H. Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J Am Chem Soc, 1998, 120: 7848-7859
[119]
113 Wang D H, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 2009, 3: 907-914