全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

LiFePO4结晶性、颗粒尺寸和Fe2P原位引入对其倍率性能的协同作用

DOI: 10.1360/972013-793, PP. 3328-3335

Keywords: 锂离子电池,LiFePO4/C,Fe2P,分步联合煅烧,倍率性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用溶胶凝胶法,以LiOH,Fe2C2O4和NH4H2PO4为原材料,以乙二醇为络合剂和碳源,通过对合成LiFePO4的前驱体在不同温度和时间的分步煅烧,获得了兼具良好结晶性、亚微米颗粒尺寸和含适量原位引入Fe2P的LiFePO4/C复合材料,该材料作为锂离子电池正极材料表现出优良的倍率性能.采用X射线衍射、扫描电子显微镜、元素分析等方法和恒电流充放电等测试技术对获得的LiFePO4/C材料的结构和电化学性能进行研究.结果表明,分步联合煅烧是综合实现适量Fe2P相的原位引入、LiFePO4颗粒尺寸控制和提高LiFePO4结晶性的有效途径,其显著提高了LiFePO4/C材料的高倍率性能.经600℃煅烧20h再经700℃煅烧4h获得的含4wt%Fe2P和3wt%C的LiFePO4/C复合正极材料,在1,10和20C放电条件下的放电容量分别达到140,110和100mAh/g.

References

[1]  3 Oh S W, Myung S T, Oh S M, et al. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater, 2010, 22: 4842-4845:
[2]  5 Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458: 190-193:
[3]  6 Kadoma Y, Kim J M, Abiko K, et al. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim Acta, 2010, 55: 1034-1041:
[4]  9 Bi H, Huang F Q, Tang Y F, et al. Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochim Acta, 2013, 88: 414-420:
[5]  10 Ding Y, Jiang Y, Xu F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun, 2010, 12: 10-13:
[6]  11 Wu Y M, Wen Z H, Feng H B, et al. Sucrose-sssisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes. Chem Eur J, 2013, 19: 5631-5636:
[7]  13 Gao H Y, Jiao L F, Yang J Q, et al. High rate capability of Co-doped LiFePO4/C. Electrochim Acta, 2013, 97: 143-149:
[8]  15 曾令杰, 龚强, 廖小珍, 等. 微量Mn 掺杂LiFePO4/C材料的低温电化学性能. 科学通报, 2010, 55: 2748-2752:
[9]  16 Liu J, Liu F K, Yang G L, et al. The preparation of conductive nano-LiFePO4/PAS and its electrochemical performance. Electrochim Acta, 2010, 55: 1067-1071:
[10]  20 Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater, 2004, 3: 147-152:
[11]  21 Gao M X, Lin Y, Yin Y H, et al. Structure optimization and the structural factors for the discharge rate performance of LiFePO4/C cathode materials. Electrochim Acta, 2010, 55: 8043-8050:
[12]  23 Yin Y H, Gao M X, Ding J L, et al. A carbon-free LiFePO4 cathode material of high-rate capability prepared by a mechanical activation method. J Alloys Compd, 2011, 509: 10161-10166
[13]  1 Padhi A K, Nanjundaswamy K S, Goodenough J B, et al. Phospho-olivines as positive-electrode materials for rechargeable lithium Batteries. J Electrochem Soc, 1997, 144: 1188-1194:
[14]  2 Dell'Era A, Pasquali M K. Comparison between different ways to determine diffusion coefficient and by solving Fick's equation for spherical coordinates. J Solid State Electrochem, 2009, 13: 849-859:
[15]  4 Lu C Z, Fey G T K, Kao H M. Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sources, 2009, 189: 155-162:
[16]  7 Li S C, Zhang S Y, Cheng F Y, et al. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries. Nano Res, 2008, 1: 242-248:
[17]  8 Zhou Y, Wang J, Hu Y, et al. A porous LiFePO4 and carbon nanotube composite. Chem Comm, 2010, 46: 7151-7153:
[18]  12 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002, 1: 123-128:
[19]  14 Harrison K L, Bridges C A, Paranthaman M P, et al. Temperature dependence of aliovalent-vanadium doping in LiFePO4 cathodes. Chem Mater, 2013, 25: 768-781:
[20]  17 Doherty C M, Caruso R A, Smarsly B M, et al. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem Mater, 2009, 21: 2895-2903:
[21]  18 Ju S Y, Liu T, Peng H R, et al. A facile synthesis route for porous spherical LiFePO4/C microscale secondary particles. Mater Lett, 2013, 93: 194-198:
[22]  19 Xie M, Zhang X X, Wang Y Z, et al. A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide. Electrochim Acta, 2013, 94: 16-20:
[23]  22 Yin Y H, Gao M X, Pan H G, et al. High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon. J Power Sources, 2012, 199: 256-262:

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133