3 Oh S W, Myung S T, Oh S M, et al. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater, 2010, 22: 4842-4845:
[2]
5 Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458: 190-193:
[3]
6 Kadoma Y, Kim J M, Abiko K, et al. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim Acta, 2010, 55: 1034-1041:
[4]
9 Bi H, Huang F Q, Tang Y F, et al. Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochim Acta, 2013, 88: 414-420:
[5]
10 Ding Y, Jiang Y, Xu F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun, 2010, 12: 10-13:
[6]
11 Wu Y M, Wen Z H, Feng H B, et al. Sucrose-sssisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes. Chem Eur J, 2013, 19: 5631-5636:
[7]
13 Gao H Y, Jiao L F, Yang J Q, et al. High rate capability of Co-doped LiFePO4/C. Electrochim Acta, 2013, 97: 143-149:
16 Liu J, Liu F K, Yang G L, et al. The preparation of conductive nano-LiFePO4/PAS and its electrochemical performance. Electrochim Acta, 2010, 55: 1067-1071:
[10]
20 Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater, 2004, 3: 147-152:
[11]
21 Gao M X, Lin Y, Yin Y H, et al. Structure optimization and the structural factors for the discharge rate performance of LiFePO4/C cathode materials. Electrochim Acta, 2010, 55: 8043-8050:
[12]
23 Yin Y H, Gao M X, Ding J L, et al. A carbon-free LiFePO4 cathode material of high-rate capability prepared by a mechanical activation method. J Alloys Compd, 2011, 509: 10161-10166
[13]
1 Padhi A K, Nanjundaswamy K S, Goodenough J B, et al. Phospho-olivines as positive-electrode materials for rechargeable lithium Batteries. J Electrochem Soc, 1997, 144: 1188-1194:
[14]
2 Dell'Era A, Pasquali M K. Comparison between different ways to determine diffusion coefficient and by solving Fick's equation for spherical coordinates. J Solid State Electrochem, 2009, 13: 849-859:
[15]
4 Lu C Z, Fey G T K, Kao H M. Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sources, 2009, 189: 155-162:
[16]
7 Li S C, Zhang S Y, Cheng F Y, et al. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries. Nano Res, 2008, 1: 242-248:
[17]
8 Zhou Y, Wang J, Hu Y, et al. A porous LiFePO4 and carbon nanotube composite. Chem Comm, 2010, 46: 7151-7153:
[18]
12 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002, 1: 123-128:
[19]
14 Harrison K L, Bridges C A, Paranthaman M P, et al. Temperature dependence of aliovalent-vanadium doping in LiFePO4 cathodes. Chem Mater, 2013, 25: 768-781:
[20]
17 Doherty C M, Caruso R A, Smarsly B M, et al. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem Mater, 2009, 21: 2895-2903:
[21]
18 Ju S Y, Liu T, Peng H R, et al. A facile synthesis route for porous spherical LiFePO4/C microscale secondary particles. Mater Lett, 2013, 93: 194-198:
[22]
19 Xie M, Zhang X X, Wang Y Z, et al. A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide. Electrochim Acta, 2013, 94: 16-20:
[23]
22 Yin Y H, Gao M X, Pan H G, et al. High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon. J Power Sources, 2012, 199: 256-262: