全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

浙江古田山亚热带常绿阔叶林不同干扰强度下土壤呼吸的日动态与季节变化

DOI: 10.1360/972013-389, PP. 3839-3848

Keywords: 亚热带常绿阔叶林,老龄林,次生林,人工林,土壤呼吸,土壤温度

Full-Text   Cite this paper   Add to My Lib

Abstract:

在浙江古田山常绿阔叶林区域选择了4个具代表性的不同干扰强度森林类型常绿阔叶老龄林(OF)、一次皆伐后自然恢复的天然次生林Ⅰ(SFⅠ)、皆伐后自然恢复过程中经历一次重度择伐的天然次生林Ⅱ(SFⅡ)、人工杉木林(AF)为研究对象,进行了为期1年的土壤呼吸动态监测,定量分析了不同林型土壤呼吸的昼夜和季节变化,同时结合相关环境和生物因子的监测,从日尺度和季节尺度上探讨了影响我国亚热带常绿阔叶林区不同森林土壤呼吸的主要驱动因子,并就不同的森林管理方式对亚热带森林土壤碳释放的可能影响做出了初步评估.研究发现4种林型土壤碳日累积释放量呈现显著的季节变化,从5月份开始各林型土壤碳日累积释放量以较快速率升高,老龄林8月中旬达到最大,次生林Ⅰ在7月中旬达最大,次生林Ⅱ和人工林在6月中旬达最大,之后各林型持续下降到翌年1月份,而后开始缓慢回升.4种林型年平均土壤碳日累积释放量分别为1.48,1.48,1.51,0.87gCm-2d-1,人工林的土壤碳日累积释放量显著低于其他3种林型.各林型的土壤呼吸速率的日变化幅度均不显著.土壤表层温度是影响该地区土壤呼吸季节动态的主要因素,二者呈显著的指数相关关系,相关系数R2为0.88~0.94;土壤表层含水量与土壤呼吸之间没有显著的相关关系.老龄林土壤温度敏感性(Q10值)显著高于其他林型.上述结果表明,受干扰强度最大的人工林的土壤呼吸速率显著降低,对温度变化的敏感性显著降低;受干扰强度相对较小的次生林其土壤呼吸速率和温度敏感性基本上和老龄林保持一致.古田山不同林型土壤呼吸季节变化的主要驱动因子均为土壤温度.这些结论说明不同干扰强度对亚热带森林土壤碳释放的影响不同,这为精确估算该地区不同植被类型碳收支提供了重要依据,此外土壤呼吸无显著昼夜变化的结论将对该区域后续的动态监测工作起到积极的指导作用.

References

[1]  1 沙丽清, 郑征, 唐建维, 等. 西双版纳热带季节雨林的土壤呼吸. 中国科学D辑: 地球科学, 2004, 34 (增刊Ⅱ): 167-174
[2]  3 Gates D M. Climate Change and Its Biological Consequences. Sunderland: Sinauer Associates Inc, 1993
[3]  5 Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration. Glob Change Biol, 2002, 8: 800-812
[4]  7 Gong J R, Ge Z W, An R, et al. Soil respiration in poplar plantations in northern China at different forest ages. Plant Soil, 2012, 360: 109-122
[5]  8 Woodwell G M, Whitaker R H, Reiners W A, et al. Biota and world carbon budget. Science, 1978, 199: 141-146
[6]  13 Kretzschmar A, Ladd J N. Decomposition of 14C-labeled plant material in soil: the influence of substrate location, soil compaction and earthworm numbers. Soil Biol Biochem, 1993, 25: 803-809
[7]  14 Musselman R C, Fox D G. A review of the role of temperate forests in the global CO2 balance. J Air Waste Manage, 1991, 41: 798-807
[8]  17 Davidson E A, Janssens I A, Luo Y Q. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob Change Biol, 2006, 12: 154-164
[9]  18 刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 1997, 17: 469-476
[10]  19 宋永昌, 陈小勇, 王希华. 中国常绿阔叶林研究的回顾与展望. 华东师范大学学报(自然科学版), 2005, 1: 1-8
[11]  21 展小云, 于贵瑞, 郑泽梅, 等. 中国区域陆地生态系统土壤呼吸碳排放及其空间格局——基于通量观测的地学统计评估. 地球科学进展, 2012, 31: 97-108
[12]  22 方精云, 王娓. 作为地下过程的土壤呼吸: 我们理解了多少? 植物生态学报, 2007, 31: 345-347
[13]  24 韩天丰, 周国逸, 李跃林, 等. 中国南亚热带森林不同演替阶段土壤呼吸的分离量化. 植物生态学报, 2011, 35: 946-954
[14]  31 于明坚, 胡正华, 余建平, 等. 浙江古田山自然保护区森林植被类型. 浙江大学学报(农业与生命科学版), 2001, 27: 375-380
[15]  32 马克平. 监测是评估生物多样性保护进展的有效途径. 生物多样性, 2011, 19: 125-126
[16]  38 Betson N R, G?ttlicher S R, Hall M, et al. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest. Tree Physiol, 2007, 27: 749-756
[17]  39 朱宁. 中亚热带不同常绿阔叶林群落土壤呼吸及其影响因素研究. 硕士学位论文. 福州: 福建师范大学, 2010
[18]  40 盛浩.中亚热带山区土壤呼吸及其组分对土地利用变化的响应. 博士学位论文. 福州: 福建师范大学, 2010
[19]  41 黄承才, 葛滢, 常杰, 等. 中亚热带东部三种主要木本群落土壤呼吸的研究. 生态学报, 1999, 19: 324-328
[20]  42 Iqbal J, Hu R G, Du L J, et al. Differences in soil CO2 flux between different land use tyes in mid-subtropical China. Soil Biol Biochem, 2008, 40: 2324-2333
[21]  44 Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Pieca abies stands. Soil Biol Biochem, 2000, 32: 1625-1635
[22]  45 Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature. Soil Biol Biochem, 2001, 33: 155-165
[23]  46 Xu M, Qi Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob Change Biol, 2001, 7: 667-677
[24]  47 Kiese R, Butterbach-Bahl K. N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol Biochem, 2002, 34: 975-987
[25]  48 Gough C M, Seiler JR. The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. For Ecol and Manage, 2004, 191: 353-363
[26]  49 韩广轩, 周广胜. 土壤呼吸作用时空动态变化及其影响机制研究与展望. 植物生态学报, 2009, 33: 197-205
[27]  50 Lou Y S, Li Z P, Zhang T L. Carbon dioxide flux in a subtropical agricultural soil of China. Water Air Soil Pollut, 2003, 149: 281-293
[28]  52 Wang W, Peng S S, Wang T, et al. Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forest-steppe ecotone, North China. Soil Biol Biochem, 2010, 42: 451-458
[29]  55 Iqbal J, Hu R G, Feng M L, et al. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land use: A case study at three gorges reservoir area, South China. Agr Ecosyst Environ, 2010, 137: 294-307
[30]  2 朴世龙, 方精云, 黄耀. 中国陆地生态系统碳收支. 中国基础科学, 2010, 6: 20-23
[31]  4 周广胜, 王玉辉, 蒋延玲, 等. 陆地生态系统类型转变与碳循环. 植物生态学报, 2002, 26: 250-254
[32]  6 Liu J, Jiang P K, Wang H L, et al. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. For Ecol Manage, 2011, 262: 1131-1137
[33]  9 Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-583
[34]  10 Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169-172
[35]  11 Fu S L, Cheng W X, Susfalk R. Rhizosphere respiration varies with plant species and phenology: A greenhouse pot experiment. Plant Soil, 2002, 239: 133-140
[36]  12 Tang J W, Baldocchi D D. Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 2005, 73: 183-207
[37]  15 Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B: 81-99
[38]  16 Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycle, 1995, 9: 23-36
[39]  20 辛勤, 刘源月, 刘云斌. 中国亚热带森林土壤呼吸的基本特点. 成都大学学报(自然科学版), 2010, 29: 32-35
[40]  23 Yan J H, Zhang D Q, Zhou G Y, et al. Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve. Soil Biol Biochem, 2009, 41: 991-999
[41]  25 郭明, 康蒙, 仲强, 等. 浙江天童森林退化和受损对土壤呼吸的影响. 华东师范大学学报(自然科学版), 2011, 4: 53-60
[42]  26 冯文婷, 邹晓明, 沙丽清, 等. 哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较. 植物生态学报, 2008, 32: 31-39
[43]  27 杨智杰, 陈光水, 黄石德, 等. 中亚热带山区不同土地利用方式土壤呼吸的日动态变化. 亚热带资源与环境学报, 2009, 4: 39-45
[44]  28 田大伦, 王光军, 闫文德, 等. 亚热带樟树和枫香林土壤呼吸动态特征. 科学通报, 2009, 54: 2437
[45]  29 王超, 杨智杰, 陈光水, 等. 万木林保护区毛竹林土壤呼吸特征及影响因素. 应用生态学报, 2011, 22: 1212-1218
[46]  30 楼炉焕, 金水虎. 浙江古田山自然保护区种子植物区系分析. 北京林业大学学报, 2000, 22: 33-39
[47]  33 宋凯, 米湘成, 贾琪, 等. 不同程度人为干扰对古田山森林群落谱系结构的影响. 生物多样性, 2011, 19: 190-196
[48]  34 罗璐, 申国珍, 谢宗强, 等. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性. 植物生态学报, 2011, 35: 722-730
[49]  35 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999
[50]  36 刘占峰, 刘国华, 傅伯杰, 等. 人工油松林(Pinus tabulaeformis)恢复过程中土壤微生物生物量C、N的变化特征. 生态学报, 2007, 27: 1011-1018
[51]  37 Lopes de Gerenyu V O, Kurbatova Y A, Kurganova I N, et al. Daily and seasonal dynamics of CO2 fluxes from soil under different stands of Monsoon tropical forest. Eurasian Soil Sci, 2011, 44: 984-990
[52]  43 Sheng H, Yang Y S, Yang Z J, et al. The dynamic response of soil respiration to land-use changes in subtropical China. Glob Change Biol, 2010, 16: 1107-1121
[53]  51 Tang X L, Liu S G, Zhou G Y, et al. Soil-atmospheric exchange of CO2, CH4 and N2O in three subtropical forest ecosystems in southern China. Glob Change Biol, 2006, 12: 546-560
[54]  53 Tang X L, Zhou G Y, Liu S G, et al. Dependence of soil respiration on soil temperature and soil moisture in successional forests in southern China. Acta Botan Sin, 2006, 48: 654-663
[55]  54 Fierer N, Colman B P, Schimel J P, et al. Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Glob Biogeochem Cycle, 2006, 20, doi: 10.1029/2005GB002644

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133