全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

应用颗粒物化学组分监测仪(ACSM)实时在线测定致霾细粒子无机和有机组分

DOI: 10.1360/972013-501, PP. 3818-3828

Keywords: ACSM,PM1,,化学组分,有机气溶胶,消光系数,示踪m/z

Full-Text   Cite this paper   Add to My Lib

Abstract:

以霾为代表的空气污染严重危害人体健康.霾的形成与细颗粒物化学组分的变化密切相关.本文详细报道了颗粒物化学组分监测仪(ACSM)在表征致霾细粒子化学组分,包括有机物、硫酸盐、硝酸盐、铵盐和氯化物,及其在快速估算大气一次和二次有机组分中的应用.通过对2012年9月北京亚微米细颗粒物(PM1)的观测研究发现,北京秋季重霾污染天和清洁天的化学组分存在显著差异.有机物是PM1的主要化学组分,在清洁天平均贡献PM1的约70%,而在重霾污染天,二次无机组分贡献量显著增加,超过50%.利用有机气溶胶正矩阵因子分解(PMF)源解析结果,进一步建立了适用于北京秋季示踪质荷比m/z57和m/z44快速估算大气一次(HOA)和二次有机气溶胶(OOA)的关系式,即HOA=26.6×(m/z57-0.02×m/z44);OOA=4.4×m/z44.PM1总质量浓度与细颗粒物总消光系数高度相关(r2=0.91),说明亚微米细颗粒物在霾的形成过程中起重要作用,其中消光系数与二次颗粒物的相关性远高于一次颗粒物,说明二次颗粒物化学组分的生成和转化在霾形成中起更为关键的作用.

References

[1]  1 吴兑, 吴小京, 李菲, 等. 中国大陆1951~2005年霾与雾的长期变化. 气象学报, 2010, 68: 680-688
[2]  2 Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 2012, 12: 779-799
[3]  3 Chan C K, Yao X. Air pollution in mega cities in China. Atmos Environ, 2008, 42: 1-42
[4]  4 Duan F, Liu X, Yu T, et al. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ, 2004, 38: 1275-1282
[5]  5 He K, Yang F, Ma Y, et al. The characteristics of PM2.5 in Beijing, China. Atmos Environ, 2001, 35: 4959-4970
[6]  6 Sun Y, Zhuang G, Wang Y, et al. The air-borne particulate pollution in Beijing-concentration, composition, distribution and sources. Atmos Environ, 2004, 38: 5991-6004
[7]  7 Huang X F, He L Y, Hu M, et al. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmos Chem Phys, 2010, 10: 8933-8945
[8]  8 Sun J, Zhang Q, Canagaratna M R, et al. Highly time-and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmos Environ, 2010, 44: 131-140
[9]  9 Sun Y, Wang Z, Dong H, et al. Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmos Environ, 2012, 51: 250-259
[10]  10 Zhang Q, Jimenez J L, Canagaratna M R, et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced northern hemisphere mid-latitudes. Geophys Res Lett, 2007, 34: L13801
[11]  11 Sun Y L, Wang Z F, Fu P Q, et al. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos Chem Phys, 2013, 13: 4577-4592
[12]  12 姚婷婷, 黄晓锋, 何凌燕, 等. 深圳市冬季大气消光性质与细粒子化学组成的高时间分辨率观测和统计关系研究. 中国科学: 化学, 2010, 40: 1163-1171
[13]  26 Huffman J A, Jayne J T, Drewnick F, et al. Design, modeling, optimization, and experimental tests of a particle beam width probe for the Aerodyne Aerosol Mass Spectrometer. Aerosol Sci Tech, 2005, 39: 1143-1163
[14]  30 Ulbrich I M, Canagaratna M R, Zhang Q, et al. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmos Chem Phys, 2009, 9: 2891-2918
[15]  36 Mohr C, DeCarlo P F, Heringa M F, et al. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos Chem Phys, 2012, 12: 1649-1665
[16]  37 Bergin M H, Cass G R, Xu J, et al. Aerosol radiative, physical, and chemical properties in Beijing during June 1999. J Geophys Res, 2001, 106: 17969-17980
[17]  40 Malm W C, Hand J L. An examination of the physical and optical properties of aerosols collected in the IMPROVE program. Atmos Environ, 2007, 41: 3407-3427
[18]  41 Cheng Y F, Wiedensohler A, Eichler H, et al. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmos Environ, 2008, 42: 6351-6372
[19]  42 Zhang F, Xu L, Chen J, et al. Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009-May 2010. Atmos Res, 2011, 106: 150-158
[20]  43 Massoli P, Fortner E C, Canagaratna M R, et al. Pollution gradients and chemical characterization of particulate matter from vehicular traffic near major roadways: Results from the 2009 queens college air quality study in NYC. Aerosol Sci Tech, 2012, 46: 1201-1218
[21]  13 Huang K, Zhuang G, Lin Y, et al. Impact of anthropogenic emission on air quality over a megacity—Revealed from an intensive atmospheric campaign during the Chinese Spring Festival. Atmos Chem Phys, 2012, 12: 11631-11645
[22]  14 Huang K, Zhuang G, Lin Y, et al. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai. Atmos Chem Phys, 2012, 12: 105-124
[23]  15 Sun Y, Zhuang G, Tang A, et al. Chemical characteristics of PM2.5 and PM10 in Haze-Fog episodes in Beijing. Environ Sci Technol, 2006, 40: 3148-3155
[24]  16 Guo S, Hu M, Wang Z B, et al. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: Implication of regional secondary formation. Atmos Chem Phys, 2010, 10: 947-959
[25]  17 Dong H B, Zeng L M, Hu M, et al. Technical note: The application of an improved gas and aerosol collector for ambient air pollutants in China. Atmos Chem Phys, 2012, 12: 10519-10533
[26]  18 Orsini D A, Ma Y L, Sullivan A, et al. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmos Environ, 2003, 37: 1243-1259
[27]  19 Canagaratna M, Jayne J, Jimenez J L, et al. Chemical and microphysical characterization of aerosols via Aerosol Mass Spectrometry. Mass Spectrom Rev, 2007, 26: 185-222
[28]  20 Ng N L, Herndon S C, Trimborn A, et al. An aerosol chemical speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Sci Tech, 2011, 45: 770-784
[29]  21 Liu P S K, Deng R, Smith K A, et al. Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the Aerodyne Aerosol Mass Spectrometer. Aerosol Sci Tech, 2007, 41: 721-733
[30]  22 Makkonen U, Virkkula A, M?ntykentt? J, et al. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: Comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity. Atmos Chem Phys, 2012, 12: 5617-5631
[31]  23 DeCarlo P F, Kimmel J R, Trimborn A, et al. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal Chem, 2006, 78: 8281-8289
[32]  24 Zhang Q, Canagaratna M C, Jayne J T, et al. Time and size-resolved chemical composition of submicron particles in Pittsburgh— Implications for aerosol sources and processes. J Geophys Res, 2005, 110: D07S09, doi: 10.1029/2004JD004649
[33]  25 Allan J D, Delia A E, Coe H, et al. A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J Aerosol Sci, 2004, 35: 909-922
[34]  27 Matthew B M, Middlebrook A M, Onasch T B. Collection efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci Tech, 2008, 42: 884-898
[35]  28 Middlebrook A M, Bahreini R, Jimenez J L, et al. Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data. Aerosol Sci Tech, 2011, 46: 258-271
[36]  29 Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5: 111-126
[37]  31 Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ, 1995, 29: 3527-3544
[38]  32 Zhang Q, Alfarra M R, Worsnop D R, et al. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ Sci Technol, 2005, 39: 4938-4952
[39]  33 Aiken A C, Salcedo D, Cubison M J, et al. Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)—Part 1: Fine particle composition and organic source apportionment. Atmos Chem Phys, 2009, 9: 6633-6653
[40]  34 Ng N L, Canagaratna M R, Jimenez J L, et al. Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data. Environ Sci Technol, 2011, 45: 910-916
[41]  35 Sun Y L, Zhang Q, Schwab J J, et al. Characterization of the sources and processes of organic and inorganic aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer. Atmos Chem Phys, 2011, 11: 1581-1602
[42]  38 Huang Y, Li L, Li J, et al. A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China. Atmos Chem Phys, 2013, 13: 3931-3944
[43]  39 Pereira S N, Wagner F, Silva A M. Seven years of measurements of aerosol scattering properties, near the surface, in the southwestern Iberia Peninsula. Atmos Chem Phys, 2011, 11: 17-29

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133