全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

污水中类固醇雌激素的去除及其机理研究进展

DOI: 10.1360/972013-140, PP. 3785-3797

Keywords: 雌酮,雌二醇,污水,微生物,吸附,臭氧氧化,光降解

Full-Text   Cite this paper   Add to My Lib

Abstract:

类固醇雌激素被认为具有极强的内分泌干扰性和生物活性,在极低浓度下就能引起人体或动物生殖障碍、行为异常和幼体变异.根据近年来全球监测数据,水体类固醇雌激素的含量已临近甚至超过动物毒理试验的警戒水平.污水处理厂是环境类固醇雌激素的主要源头之一,如何从源头控制类固醇雌激素的排放备受关注.本文将从生物降解、吸附及氧化去除三方面来阐述它们在水处理过程中降解类固醇雌激素时发挥的作用及差异,以期为今后类固醇雌激素的水处理技术研究提供基础信息.

References

[1]  1 Ying G G, Kookana R S, Ru Y J. Occurrence of fate of hormone steroids in the environment. Environ Int, 2002, 28: 545-551
[2]  3 Campbell C G, Borglin S E, Green F B, et al. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere, 2006, 65: 1265-1280
[3]  4 Tabata A, Kashiwada S, Ohnishi Y, et al. Estrogenic influences of estradiol-17β, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations. Water Sci Technol, 2001, 43: 109-116
[4]  16 Combalbert S, Hernandez-Raquet G. Occurrence, fate and biodegradation of estrogens in sewage and manure. Appl Microbiol Biotechnol, 2010, 86: 1671-1692
[5]  17 Khanal S K, Xie B, Thompson M L, et al. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol, 2006, 40: 6537-6546
[6]  18 Duguet J P, Bruchet A, Mallevialle J. Pharmaceuticals and endocrine disruptors in the water cycle. IWA Yearbook, 2004. 41-46
[7]  19 Zhou Y Q, Zha J M, Wang Z J. Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China. Environ Monit Assess, 2012, 18: 6799-6813
[8]  21 Ternes T A, Stumpf M, Mueller J, et al. Behaviour and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci Total Environ, 1999, 225: 81-90
[9]  22 Andersen H, Siegrist H, Halling-Sorensen B, et al. Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol, 2003, 37: 4021-4026
[10]  23 Zuehlke S, Duennbier U, Heberer T. Determination of estrogenic steroids in surface water and wastewater by liquid chromatography-electrospray tandem mass spectrometry. J Sep Sci, 2005, 28: 52-58
[11]  24 Matsui S, Takigami H, Matsuda T, et al. Estrogen and estrogen mimics contamination in water and the role of sewage treatment. Water Sci Technol, 2000, 42: 173-179
[12]  25 Whidbey C M, Daumit K E, Nguyen T H, et al. Photochemical induced changes of in vitro estrogenic activity of steroid hormones. Water Res, 2012, 46: 5287-5296
[13]  27 Larson T, Lienert J, Joss A, et al. How to avoid pharmaceuticals in the aquatic environment. J Biotechnol, 2004, 113: 295-299
[14]  28 Hu J Y, Cheng S, Aizawa T, et al. Products of aqueous chlorination of 17β-estradiol and their estrogenic activities. Environ Sci Technol, 2003, 37: 5665-5670
[15]  29 Liu B, Liu X. Direct photolysis of estrogens in aqueous solutions. Sci Total Environ, 2004, 320: 269-274
[16]  33 Danish Environmental Protection Agency (DEPA). Degradation of estrogens in sewage treatment processes. Environmental Project No. 899. 2004
[17]  34 Lee H B, Liu D. Degradation of 17β-estradiol and its metabolites by sewage bacteria. Water Air Soil Pollut, 2002, 134: 353-368
[18]  36 Zhou H D, Huang X, Wang X L, et al. Behaviour of selected endocrine-disrupting chemicals in three sewage treatment plants of Beijing, China. Environ Monit Assess, 2010, 161: 107-121
[19]  37 Birkett J W, Lester J N. Endocrine Disrupters in Wastewater and Sludge Treatment Processes. Florida: Lewis Publishers, 2002
[20]  42 Husain Q, Qayyum S. Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: A review. Crit Rev Biotechnol, 2012, 1-33
[21]  43 Vader J S, van Ginkel C G, Sperling F M G M, et al. Degradation of ethynyl estradiol by nitrifying activated sludge. Chemosphere, 2000, 41: 1239-1243
[22]  44 Skotnicka-Pitak J, Khunjar W O, Aga D S, et al. Characterization of metabolites formed during the biotransformation of 17α-ethinylestradiol by Nitrosomonas europaea in batch and continuous flow bioreactors. Environ Sci Technol, 2009, 43: 3549-3555
[23]  46 Adler P, Steger-Hartmann T, Kalbfus W. Distribution of natural and synthetic estrogenic steroid hormones in water samples from southern and middle Germany. Acta Hydroch Hydrobiol, 2001, 29: 227-241
[24]  49 Routledge E J, Sheahan D, Desbrow C, et al. Identification of estrogenic chemical in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Tecchnol, 1998, 32: 1559-1565
[25]  52 Batt A L, Kim S, Aga D S. Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environ Sci Technol, 2006, 40: 7367-7373
[26]  53 Leahy J G, Batchelor P J, Morcomb S M. Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev, 2003, 27: 449-479
[27]  54 Shi J H, Fujisawa S, Nakai S, et al. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res, 2004, 38: 2323-2330
[28]  56 McCarty G W. Modes of action of nitrification inhibitors. Biol Fert Soils, 1999, 29: 1-19
[29]  57 Keener W K, Arp D J. Transformations of aromatic-compounds by Nitrosomonas-europaea. Appl Environ Microbiol, 1994, 60: 1914-1920
[30]  60 Ren Y X, Nakano K, Nomura M, et al. Effects of bacterial activity on estrogen removal in nitrifying activated sludge. Water Res, 2007, 41: 3089-3096
[31]  61 DeGusseme B, Pycke B, Hennebel T, et al. Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res, 2009, 43: 2493-2503
[32]  62 Fujii K, Kikuchi S, Satomi M, et al. Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl Environ Microbiol, 2002, 68: 2057-2060
[33]  63 Yoshimoto T, Nagai F, Fujimoto J, et al. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolated from activated sludge in wastewater treatment plants. Appl Environ Microbiol, 2004, 70: 5283-5289
[34]  64 Yu Z, Huang W. Competitive sorption between 17α-ethinyl estradiol and naphthalene/phenanthrene by sediments. Environ Sci Technol, 2005, 39: 4878-4885
[35]  65 Yu C P, Roh H, Chu K H. 17β-estradiol-degrading bacteria isolated from activated sludge. Environ Sci Technol, 2007, 41: 486-492
[36]  67 Auriol M, Filali-Meknassi Y, Tyagi R D, et al. Oxidation of natural and synthetic hormones by the horseradish peroxidase enzyme in wastewater. Chemosphere, 2007, 68: 1830-1837
[37]  68 Tamagawa Y, Yamaki R, Hirai H, et al. Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi. Chemosphere, 2006, 65: 97-101
[38]  69 Auriol M, Filali-Meknassi Y, Tyagi R D, et al. Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Res, 2007, 41: 3281-3288
[39]  70 Ternes T A, Andersen H, Gilberg D, et al. Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Anal Chem, 2002, 74: 3498-3504
[40]  71 Casey F X M, Larsen G L, Hakk H, et al. Fate and transport of 17β-estradiol in soil-water system. Environ Sci Technol, 2003, 37: 2400-2409
[41]  72 Johnson K. The Partitioning of Natural and Synthetic Estrogens Between Aqueous and Solid Phases. London: Imperial College of Science Technology and Medicine, 1999
[42]  74 Fukuhara T, Iwasaki S, Kawashima M, et al. Adsorbability of estrone and 17β-estradiol in water onto activated carbon. Water Res, 2006, 40: 241-248
[43]  77 Zhang Y, Zhou J L. Removal of estrone and 17β-estradiol from water by adsorption. Water Res, 2005, 39: 3991-4003
[44]  83 Snyder S A, Adhamb S, Redding A M, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 2007, 202: 156-181
[45]  85 Le Noir M, Lepeuple A S, Guieysse B, et al. Selective removal of 17β-estradiol at trace concentration using a molecularly imprinted polymer. Water Res, 2007, 41: 2825-2831
[46]  86 Murray A, Ormeci B, Lai E P. Removal of 17β-estradiol (E2) and its chlorination by-products from water and wastewater using non-imprinted polymer (NIP) particles. Water Sci Technol, 2011, 64: 1291-1297
[47]  87 Zhang Z B, Hu J Y. Selective removal of estrogenic compounds by molecular imprinted polymer (MIP). Water Res, 2008, 42: 4101-4108
[48]  88 Meng Z, Chen W, Mulchandani A. Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environ Sci Technol, 2005, 39: 8958-8962
[49]  95 Sch?fer A I, Nghiem D L, Waite T D. Removal of natural hormone estrone from water and wastewater using nanofiltration and reverse osmosis. Environ Sci Technol, 2004, 38: 1888-1896
[50]  96 Semi?o A J C, Foucher M, Sch?fer A I. Removal of adsorbing estrogenic micropollutants by nanofiltration membrances. Part B-model development. J Membr Sci, 2013, 431: 257-266
[51]  97 Dudziak M, Bodzek M. Selected factors affecting the elimination of hormones from water using nanofiltration. Desalination, 2009, 240: 236-243
[52]  100 Ternes T A, Stuber J, Herrmann N, et al. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res, 2003, 37: 1976-1982
[53]  101 Nakagawa S, Kenmochi Y, Tutumi K, et al. A study on the degradation of endocrine disruptors and dioxins by ozonation and advanced oxidation processes. J Chem Eng Jpn, 2002, 35: 840-847
[54]  102 Lin Y X, Peng Z H, Zhang X. Ozonation of estrone, estradiol, diethylstilbestrol in waters. Desalination, 2009, 249: 235-240
[55]  103 Irmak S, Erbatur O, Akgerman A. Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J Hazard Mater, 2005, 126: 54-62
[56]  105 Alum A, Yoon Y, Westerhoff P, et al. Oxidation of bisphenol, 17β-estradiol and 17α-ethynylestradiol and byproduct estrogenicity. Environ Toxicol, 2004, 19: 257-264
[57]  106 Moriyama K, Matsufuji H, Chino M, et al. Identification and behavior of reaction products formed by chlorination of ethynylestradiol. Chemosphere, 2004, 55: 839-847
[58]  107 Rudder J D, Wiele T V D, Dhooge W, et al. Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2). Water Res, 2004, 38: 184-192
[59]  116 Trudeau V L, Heyne B, Blais J M, et al. Lumiestrone is photochemically derived from estrone and may be released to the environment without detection. Front Endocrinol, 2011, 2: 1-13
[60]  117 Mazellier P, Méité L, De Laat J. Photodegradation of the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in dilute aqueous solution. Chemosphere, 2008, 73: 1216-1223
[61]  118 Sun W L, Li S, Mai J X, et al. Initial photocatalytic degradation intermediates/pathways of 17α-ethynylestradiol: Effect of pH and methanol. Chemosphere, 2010, 81: 92-99
[62]  119 Zhang Y, Zhou J L, Ning B. Photodegradation of estrone and 17β-estradiol in water. Water Res, 2007, 41: 19-26
[63]  2 Hanselman T A, Graetz D A, Wilkie A C. Manure-borne estrogens as potential environmental contaminants: A review. Environ Sci Technol, 2003, 37: 5471-5478
[64]  5 Jobling S, Casey D, Rodgers-Gray T, et al. Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquat Toxicol, 2003, 65: 205-220
[65]  6 Shore L S, Kapulnik Y, Ben-Dor B, et al. Effects of estrone and 17β-estradiol on vegetative growth of Medicago sativa. Physiol Plant, 1992, 84: 217-222
[66]  7 Feigelson H S, Henderson B E. Estrogens and breast cancer. Carcinogenesis, 1996, 17: 2279-2284
[67]  8 Shen J H, Gutendorf B, Vahl H H, et al. Toxicological profile of pollutants in surface water from an area in Taihu Lake, Yangtze Delta. Toxicol, 2001, 166: 71-78
[68]  9 Lei B L, Huang S B, Zhou Q Y, et al. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere, 2009, 76: 36-42
[69]  10 Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000, a national reconnaissance. Environ Sci Technol, 2002, 36: 1202-1210
[70]  11 Kawaguchi M, Ishii Y, Sakui N, et al. Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry in the multi-shot mode for determination of estrogens in river water samples. J Chromatogr A, 2004, 1049: 1-8
[71]  12 Kuch K M, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol, 2001, 35: 3201-3206
[72]  13 Aerni H R, Kobler B, Rutishauser B V, et al. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem, 2004, 378: 688-696
[73]  14 Baronti C, Curini R, D'Ascenzo G, et al. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol, 2000, 34: 5059-5066
[74]  15 Noppe H, Verslycke T, De Wulf E, et al. Occurrence of estrogens in the Scheldt estuary: A 2-year survey. Ecotoxicol Environ Saf, 2007, 66: 1-8
[75]  20 Zhou Y Q, Zha J M, Xu Y P, et al. Occurrences of six steroid estrogens from different effluents in Beijing, China. Environ Monit Assess, 2012, 184: 1719-1729
[76]  26 Johnson A C, Sumpter J P. Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol, 2001, 35: 4697-4703
[77]  30 Layton A C, Gregory B W, Seward J R, et al. Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee USA. Environ Sci Technol, 2000, 34: 3925-3931
[78]  31 Svenson A, Allard A, Ek M. Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Res, 2003, 37: 4433-4443
[79]  32 Servos M R, Bennie D T, Burnison B K, et al. Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ, 2005, 336: 155-170
[80]  35 Hashimoto T, Onda K, Nakamura Y, et al. Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process. Water Res, 2007, 41: 2117-2126
[81]  38 Danish Environmental Protection Agency (DEPA). Feminisation of fish-the effect of estrogenic compounds and their fate in sewage treatment plants and nature. Environmental Project No. 729. 2002
[82]  39 Wintgens T, Gallenkemper M, Melin T. Endocrine disrupting removal from wastewater using membrane bioreactor and nanofiltration technology. Desalination, 2002, 146: 387-391
[83]  40 Spring A J, Bagley D M, Andrews R C, et al. Removal of endocrine disrupting compounds using a membrane bioreactor and disinfection. J Environ Eng Sci, 2007, 6: 131-137
[84]  41 Kikuta T, Urase T. Removal of endocrine disruptors in membrane separation activated sludge process. International Membrane Science and Technology Conference, 2003, Sydney, Australia
[85]  45 Khunjar W O, Mackintosh S A, Skotnicka-Pitak J, et al. Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17α-ethinylestradiol and trimethoprim. Environ Sci Technol, 2011, 45: 3605-3612
[86]  47 Desbrow C, Routledge E J, Brighty G C, et al. Identification of estrogenic chemicals in STW effluent: 1. Chemical fractionation and in vitro biological screening. Environ Sci Tecchnol, 1998, 32: 1549 -1558
[87]  48 Jobling S, Nolan M, Tyler C R, et al. Widespread sexual disruption in wild fish. Environ Sci Tecchnol, 1998, 32: 2498-2506
[88]  50 Ternes T A, Kreckel P, Mueller J. Behaviour and occurrence of estrogens in municipal sewage treatment plants. II. Aerobic batch experiments with activated sludge. Sci Total Environ, 1999, 225: 91-99
[89]  51 D'Ascenzo G, Di Corcia A, Gentili A, et al. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci Total Environ, 2003, 302: 199-209
[90]  55 Yi T, Harper W F. The link between nitrification and biotransformation of 17α-ethinylestradiol. Environ Sci Technol, 2007, 41: 4311-4316
[91]  58 Gaulke L S, Strand S E, Kalhorn T F, et al. 17α-ethinylestradiol transformation via abiotic naitration in the presence of ammonia oxidizing bacteria. Environ Sci Technol, 2008, 42: 7622-7627
[92]  59 Auriol M, Filali Y, Tyagi R D, et al. Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem, 2006, 41: 525-539
[93]  66 Ren H Y, Ji S L, ud din Ahmad N, et al. Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere, 2007, 66: 340-346
[94]  73 Hamid H, Eskicioglu C. Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Res, 2012, 46: 5813-5833
[95]  75 Kumar A K, Mohan S V, Sarma P N. Sorptive removal of endocrine-disruptive compound (estriol, E3) from aqueous phase by batch and column studies: Kinetic and mechanistic evaluation. J Hazard Mater, 2009, 164: 820-828
[96]  76 Kumar A K, Mohan S V. Endocrine disruptive synthetic estrogen (17α-ethynylestradiol) removal from aqueous phase through batch and column sorption studies: Mechanistic and kinetic analysis. Desalination, 2011, 276: 66-74
[97]  78 Snyder S A, Westerhoff P, Yoon Y, et al. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry. Environ Eng Sci, 2003, 20: 449-469
[98]  79 Boyd G R, Reemtsma H, Grimm D A, et al. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA, and Ontario, Canada. Sci Total Environ, 2003, 311: 135-149
[99]  80 Silva C P, Otero M, Esteves V. Processes for the elimination of estrogenic steroid hormone from water: A review. Environ Pollut, 2012, 165: 38-58
[100]  81 Yoon Y, Westerhoff P, Snyder S A. Adsorption of 3H-labeled 17β-estradiol on powdered activated carbon. Water Air Soil Pollut, 2005, 166: 343-351
[101]  82 Westerhoff P, Yoon Y, Snyder S, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol, 2005, 39: 6649-6663
[102]  84 Murray A, ?rmeci B. Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: A review. Environ Sci Pollut Res, 2012, 19: 3820-3830
[103]  89 Zhang Z B, Hu J Y. Effect of environmental factors on estrogenic compounds adsorption by MIP. Water Air Soil Pollut, 2010, 210: 255-264
[104]  90 McCallum E A, Hyung H, Do T A, et al. Adsorption, desorption, and steady-state removal of 17β-estradiol by nanofiltration membranes. J Membr Sci, 2008, 319: 38-43
[105]  91 Han J, Qiu W, Gao W. Adsorption of estrone in microfiltration membrane filters. Chem Eng J, 2010, 165: 819-826
[106]  92 Yoon Y, Westerhoff P, Yoon J, et al. Removal of 17β-estradiol and fluoranthene by nanofiltration and ultrafiltration. J Environ Eng, 2004, 130: 1460-1467
[107]  93 Alturki A A, Tadkaew N, McDonald J A, et al. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J Membr Sci, 2010, 365: 206-215
[108]  94 Chang S, Waite T D, Sch?fer A I, et al. Adsorption of trace steroid estrogens to hollow fibre membranes hydrophobic. Desalination, 2002, 146: 381-396
[109]  98 Bodzek M, Dudziak M. Elimination of steroidal sex hormones by conventional water treatment and membrane processes. Desalination, 2006, 198: 24-32
[110]  99 Sch?fer A I, Mastrup M, Jensen R L. Particle interactions and removal of trace contaminants from water and wastewaters. Desalination, 2002, 147: 243-250
[111]  104 Jiang L Y, Zhang L, Chen J M, et al. Degradation of 17β-estradiol in aqueous solution by ozonation in the presence of manganese (II) and oxalic acid. Environ Technol, 2012, 1: 1-8
[112]  108 Jiang L Y, Chen J M, Zhu R Y, et al. Degradation kinetics and estrogenic activity of 17β-estradiol removal by aqueous manganese dioxide. J Environ Sci Health Part A, 2010, 45: 938-945
[113]  109 Jiang J Q, Yin Q, Zhou J L, et al. Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere, 2005, 61: 544-550
[114]  110 Atkinson S K, Marlatt V L, Kimpe L E, et al. Environmental factors affecting ultraviolet photodegradation rates and estrogenicity of estrone and ethinylestradiol in natural waters. Arch Environ Contam Toxicol, 2011, 60: 1-7
[115]  111 Coleman H M, Routledge E J, Sumpter J P, et al. Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilized titanium dioxide catalyst. Water Res, 2004, 38: 3233-3240
[116]  112 Fonseca A P, Lima D L D, Esteves V I. Degradation by solar radiation of estrogenic hormones monitored by UV-Visible spectroscopy and capillary electrophoresis. Water Air Soil Pollut, 2011, 215: 441-447
[117]  113 Ohko Y, Iuchi K I, Niwa C, et al. 17β-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity. Environ Sci Technol, 2002, 36: 4175-4181
[118]  114 Coleman H M, Eggins B R, Byrne J A, et al. Photocatalytic degradation of 17β-oestradiol on immobilised TiO2. Appl Catal B Environ, 2000, 24: L1-L5
[119]  115 Segmuller B E, Armstrong B L, Dunphy R, et al. Identification of autoxidation and photodegradation products of ethynylestradiol by on-line HPLC-NMR and HPLC-MS. J Pharm Biomed, 2000, 23: 927-937
[120]  120 Chowdhury R R, Charpentier P A, Ray M B. Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters. J Photochem Photobiol A: Chem, 2011, 219: 67-75
[121]  121 Vione D, Falletti G, Maurino V, et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol, 2006, 40: 3775-3781
[122]  122 Lin A Y C, Reinhard M. Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environ Toxicol Chem, 2005, 24: 1303-1309
[123]  123 Nasu M, Goto M, Kato H, et al. Study on endocrine disrupting chemicals in wastewater treatment plants. Water Sci Technol, 2000, 43: 101-108

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133