全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

LA-ICP-MS在地质样品元素分析中的应用

DOI: 10.1360/csb2013-58-36-3753, PP. 3753-3769

Keywords: LA-ICP-MS,地质样品,元素分析,定量策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

LA-ICP-MS作为一种近年来发展非常快速的微区元素和同位素分析技术,对推动地球科学(尤其是微区地球化学)研究起到了非常重要的作用.本文综述了LA-ICP-MS在固体地质样品元素分析研究中的应用.尽管利用LA-ICP-MS不仅可以进行高空间分辨率的微区元素分析,而且可以对地质样品进行快速的整体分析,但对地质样品中元素含量的准确分析仍旧受到多种因素的制约,包括仪器条件、分馏效应随样品基体组成的变化、基体匹配标准物质的不足、定量化计算策略和有效的灵敏度漂移校正等.针对分析样品的类型和元素,可以通过优化仪器条件、采用合适的校正策略和标准物质来改善分析数据的准确度.

References

[1]  4 Fryer B J, Jackson S E, Longerich H P. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology. Chem Geol, 1993, 109: 1-8
[2]  6 Münker C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: Source constraints and application of refined ICPMS techniques. Chem Geol, 1998, 144: 23-45
[3]  7 Zhang W, Hu Z, Liu Y, et al. Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS. Geostand Geoanal Res, 2012, 36: 271-289
[4]  8 Eggins S M. Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostand Geoanal Res, 2003, 27: 147-162
[5]  9 Audétat A, Günther D, Heinrich C A. Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions. Science, 1998, 279: 2091-2094
[6]  10 Eggins S M, Rudnick R L, McDonough W F. The composition of peridotites and their minerals: A laser-ablation ICP-MS study. Earth Planet Sci Lett, 1998, 154: 53-71
[7]  12 Halter W, Pettke T, Heinrich C. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex I: Analytical approach and data evaluation. Contrib Mineral Petrol, 2004, 147: 385-396
[8]  13 Guillong M, Latkoczy C, Seo J H, et al. Determination of sulfur in fluid inclusions by laser ablation ICP-MS. J Anal At Spectrom, 2008, 23: 1581-1589
[9]  15 Sylvester P J, Ghaderi M. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol, 1997, 141: 49-65
[10]  17 Peng S, Hu Q, Ewing R P, et al. Quantitative 3-D Elemental Mapping by LA-ICP-MS of a Basaltic Clast from the Hanford 300 Area, Washington, USA. Environ Sci Technol, 2012, 46: 2025-2032
[11]  18 Rusk B, Koenig A, Lowers H. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. Am Mineral, 2011, 96: 703-708
[12]  20 Novotny K, Kaiser J, Galiová M, et al. Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study. Spectrochim Acta, Part B, 2008, 63: 1139-1144
[13]  21 Meurer W P, Claeson D T. Evolution of crystallizing interstitial liquid in an arc-related cumulate determined by la icp-ms mapping of a large amphibole oikocryst. J Petrol, 2002, 43: 607-629
[14]  23 Zhu L, Liu Y, Hu Z, et al. Simultaneous analysis of major and trace elements in fused volcanic rock powders by using a hermetic vessel heater and LA-ICP-MS. Geostand Geoanal Res, 2012, 37: 207-229
[15]  24 Li M, Hu Z, Gao S, et al. Direct Quantitative determination of trace elements in fine-grained whole rocks by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 2011, 35: 7-22
[16]  27 Gao S, Liu X, Yuan H, et al. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 2002, 26: 181-196
[17]  30 Günther D, Horn I, Hattendorf B. Recent trends and developments in laser ablation-ICP-mass spectrometry. Fresenius J Anal Chem, 2000, 368: 4-14
[18]  32 Telouk P, Rose-Koga E F, Albarede F. Preliminary results from a new 157 nm laser ablation icp-ms instrument: New opportunities in the analysis of solid samples. Geostand Geoanal Res, 2003, 27: 5-11
[19]  33 Günther D, Frischknecht R, Heinrich C A, et al. Capabilities of an Argon Fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J Anal At Spectrom, 1997, 12: 939-944
[20]  34 Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS. Trends Anal Chem, 2007, 26: 951-966
[21]  35 Guillong M, Horn I, Günther D. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd: YAG laser for laser ablation ICP-MS. J Anal At Spectrom, 2003, 18: 1224-1230
[22]  36 Horn I, Guillong M, Günther D. Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles—Implications for LA-ICP-MS. Appl Surf Sci, 2001, 182: 91-102
[23]  37 Koch J, Günther D. Femtosecond laser ablation inductively coupled plasma mass spectrometry: Achievements and remaining problems. Anal Bioanal Chem, 2007, 387: 149-153
[24]  38 Shaheen M E, Gagnon J E, Fryer B J. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences. Chem Geol, 2012, 330-331: 260-273
[25]  42 Leach A M, Hieftje G M. Standardless semiquantitative analysis of metals using single-shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Anal Chem, 2001, 73: 2959-2967
[26]  43 Halicz L, Günther D. Quantitative analysis of silicates using LA-ICP-MS with liquid calibration. J Anal At Spectrom, 2004, 19: 1539-1545
[27]  44 Guillong M, Hametner K, Reusser E, et al. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand Geoanal Res, 2005, 29: 315-331
[28]  45 Humayun M, Davis F A, Hirschmann M M. Major element analysis of natural silicates by laser ablation ICP-MS. J Anal At Spectrom, 2010, 25: 998-1005
[29]  46 Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 2010, 55: 1535-1546
[30]  47 Chen L, Liu Y, Hu Z, et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chem Geol, 2011, 284: 283-295
[31]  48 Gao C, Liu Y, Zong K, et al. Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole: Implications for the fluid activity and thermo-history of the UHP metamorphism. Lithos, 2010, 115: 51-64
[32]  49 梁婷, 胡兆初, 刘勇胜, 等. 激光剥蚀电感耦合等离子体质谱无内标定量分析钢铁样品. 冶金分析, 2010, 30: 1-8
[33]  52 Butler I B, Nesbitt R W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet Sci Lett, 1999, 167: 335-345
[34]  53 Jochum K P, Stoll B. Reference materials for elemental and isotopic analyses by LA-(MC)-ICP-MS: Successes and outstanding needs. In: Sylvester P, ed. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Quebec: Mineralogical Association of Canada, 2008. 147-168
[35]  55 Jochum K P, Weis U, Stoll B, et al. Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostand Geoanal Res, 2011, 35: 397-429
[36]  57 Rocholl A B E, Simon K, Jochum K P, et al. Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostand Geoanal Res, 1997, 21: 101-114
[37]  58 Jochum K P, Willbold M, Raczek I, et al. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res, 2005, 29: 285-302
[38]  59 Norman M D, Griffin W L, Pearson N J, et al. Quantitative analysis of trace element abundances in glasses and minerals: A comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. J Anal At Spectrom, 1998, 13: 477-482
[39]  61 Jochum K P, Dingwell D B, Rocholl A, et al. The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostand Geoanal Res, 2000, 24: 87-133
[40]  62 Jochum K P, Stoll B, Herwig K, et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst, 2006, 7, doi: 10.1029/2005GC001060
[41]  72 Gilbert S, Danyushevsky L, Robinson P, et al. A comparative study of five reference materials and the Lombard meteorite for the determination of the platinum-group elements and gold by LA-ICP-MS. Geostand Geoanal Res, 2012, doi: 10.1111/j.1751-908X.2012.00170.x
[42]  73 Wohlgemuth-Ueberwasser C, Ballhaus C, Berndt J, et al. Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Contrib Mineral Petrol, 2007, 154: 607-617
[43]  74 Sylvester P J, Cabri L J, Tubrett M N, et al. Synthesis and evaluation of a fused pyrrhotite standard reference material for platinum-group element and gold analysis by laser ablation ICP-MS. In: Tormanen T O, Alapieti T T, eds. Platinum-group elements—From genesis to beneficiation and environmental impact, 10th International Platinum Symposium. Oulu, Finland, 2005
[44]  76 Morgan J W, Horan M F, Walker R J, et al. Rheniumum concentration and isotope systematics in group IIAB iron meteorites. Geochim Cosmochim Acta, 1995, 59: 2331-2344
[45]  80 Fallon S J, McCulloch M T, van Woesik R, et al. Corals at their latitudinal limits: Laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett, 1999, 172: 221-238
[46]  81 Bellotto V R, Miekeley N. Improvements in calibration procedures for the quantitative determination of trace elements in carbonate material (mussel shells) by laser ablation ICP-MS. Fresenius J Anal Chem, 2000, 367: 635-640
[47]  83 Tanaka K, Takahashi Y, Shimizu H. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: An examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis. Anal Chim Acta, 2007, 583: 303-309
[48]  86 Hu Z C, Liu Y S, Chen L, et al. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J Anal At Spectrom, 2011, 26: 425-430
[49]  87 Gaboardi M, Humayun M. Elemental fractionation during LA-ICP-MS analysis of silicate glasses: Implications for matrix-independent standardization. J Anal At Spectrom, 2009, 24: 1188-1197
[50]  89 Hu Z C, Gao S, Liu Y S, et al. Niobium and tantalum concentrations in NIST SRM 610 revisited. Geostand Geoanal Res, 2008, 32: 347-360
[51]  91 Sylvester P J, Eggins S M. Analysis of Re, Au, Pd, Pt and Rh in NIST glass certified reference materials and natural basalt glasses by laser ablation ICP-MS. Geostand Geoanal Res, 1997, 21: 215-229
[52]  93 Strnad L, Mihaljevic M, Sebek O. Laser ablation and solution ICP-MS determination of rare earth elements in USGS BIR-1G, BHVO-2G and BCR-2G glass reference materials. Geostand Geoanal Res, 2005, 29: 303-314
[53]  94 Hu Z C, Gao S, Liu Y S, et al. Accurate determination of rare earth elements in USGS, NIST SRM, and MPI-DING glasses by excimer LA-ICP-MS at high spatial resolution. Spectrosc Lett, 2008, 41: 228-236
[54]  96 Günther D, Heinrich C A. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J Anal At Spectrom, 1999, 14: 1369-1374
[55]  97 Longerich H P, Günther D, Jackson S E. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J Anal Chem, 1996, 355: 538-542
[56]  98 Míková J, Ko?ler J, Longerich H P, et al. Fractionation of alkali elements during laser ablation ICP-MS analysis of silicate geological samples. J Anal At Spectrom, 2009, 24: 1244-1252
[57]  99 Kuhn H-R, Guillong M, Günther D. Size-related vaporisation and ionisation of laser-induced glass particles in the inductively coupled plasma. Anal Bioanal Chem, 2004, 378: 1069-1074
[58]  101 Eggins S M, Kinsley L P J, Shelley J M G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci, 1998, 127-129: 278-286
[59]  102 Fryer B J, Jackson S E, Longerich H P. The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences. Can Mineral, 1995, 33: 303-312
[60]  103 Kuhn H R, Günther D. Laser ablation-ICP-MS: Particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass. J Anal At Spectrom, 2004, 19: 1158-1164
[61]  104 Hu Z C, Liu Y S, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 2008, 23: 1192-1203
[62]  105 Liu Y S, Hu Z C, Yuan H L, et al. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to the analyses of fiber. J Anal At Spectrom, 2007, 22: 582-585
[63]  111 Ko?ler J, Longerich H, Tubrett M. Effect of oxygen on laser-induced elemental fractionation in LA-ICP-MS analysis. Anal Bioanal Chem, 2002, 374: 251-254
[64]  119 Nesbitt R W, Hirata T, Butler I B, et al. UV laser ablation ICP-MS: Some applications in the earth sciences. Geostand Geoanal Res, 1997, 21: 231-243
[65]  120 Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom, 2008, 23: 1093-1101
[66]  124 Eggins S M, Woodhead J D, Kinsley L P J, et al. A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol, 1997, 134: 311-326
[67]  125 Sinclair D J, Kinsley L P J, McCulloch M T. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta, 1998, 62: 1889-1901
[68]  129 Perkins W T, Pearce N J G, Jeffries T E. Laser ablation inductively coupled plasma mass-spectrometry—A new technique for the determination of trace and ultra-trace elements in silicates. Geochim Cosmochim Acta, 1993, 57: 475-482
[69]  132 Fedorowich J S, Richards J P, Jain J C, et al. A rapid method for REE and trace-element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chem Geol, 1993, 106: 229-249
[70]  133 Reid J E, Horn I, Longerich H P, et al. Determination of Zr and Hf in a flux-free fusion of whole rock samples using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) with isotope dilution calibration. Geostand Geoanal Res, 1999, 23: 149-155
[71]  137 Sylvester P. Trace element analysis of fused whole rock glasses by laser ablation ICPMS. In: Sylvester P, ed. Laser-ablation-ICPMS in the Earth Sciences: Principles and Applications. Mineralogical Association of Canada, Ontario, 2001. 147-162
[72]  142 胡明月, 何红蓼, 詹秀春, 等. 基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用. 分析化学, 2008, 36: 947-953
[73]  143 Mertz-Kraus R, Brachert T C, Jochum K P, et al. LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma. Palaeogeogr Palaeoclim Palaeoecol, 2009, 273: 25-40
[74]  144 Munksgaard N C, Antwertinger Y, Parry D L. Laser ablation icp-ms analysis of faviidae corals for environmental monitoring of a tropical estuary. Environ Chem, 2004, 1: 188-196
[75]  147 Huelin S R, Longerich H P, Wilton D H C, et al. The determination of trace elements in Fe-Mn oxide coatings on pebbles using LA-ICP-MS. J Geochem Explor, 2006, 91: 110-124
[76]  148 Nadoll P, Koenig A E. LA-ICP-MS of magnetite: Methods and reference materials. J Anal At Spectrom, 2011, 26: 1872-1877
[77]  150 Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem Geol, 2009, 261: 346-369
[78]  151 Jorge A P d S, Enzweiler J, Shibuya E K, et al. Platinum-group elements and gold determination in NiS fire assay buttons by UV laser ablation ICP-MS. Geostand Geoanal Res, 1998, 22: 47-55
[79]  152 Resano M, Garcia-Ruiz E, McIntosh K S, et al. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the determination of platinum group metals and gold in NiS buttons obtained by fire assay of platiniferous ores. J Anal At Spectrom, 2008, 23: 1599-1609
[80]  153 Pi?a R, Gervilla F, Barnes S J, et al. Distribution of platinum-group and chalcophile elements in the Aguablanca Ni-Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chem Geol, 2012, 302-303: 61-75
[81]  156 Halter W E, Pettke T, Heinrich C A. The origin of Cu/Au ratios in Porphyry-type ore deposits. Science, 2002, 296: 1844-1846
[82]  159 Heinrich C A, Pettke T, Halter W E, et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta, 2003, 67: 3473-3497
[83]  160 Pettke T, Oberli F, Audétat A, et al. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev, 2012, 44: 10-38
[84]  162 Moissette A, Shepherd T J, Chenery S R. Calibration strategies for the elemental analysis of individual aqueous fluid inclusions by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 1996, 11: 177-185
[85]  166 Leisen M, Dubessy J, Boiron M C, et al. Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature. Geochim Cosmochim Acta, 2012, 90: 110-125
[86]  170 Kamenetsky V S, Eggins S M, Crawford A J, et al. Calcic melt inclusions in primitive olivine at 43°N MAR: Evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet Sci Lett, 1998, 160: 115-132
[87]  171 Spandler C J, Eggins S M, Arculus R J, et al. Using melt inclusions to determine parent-magma compositions of layered intrusions: Application to the Greenhills Complex (New Zealand), a platinum group minerals-bearing, island-arc intrusion. Geology, 2000, 28: 991-994
[88]  172 Audétat A, Günther D, Heinrich C A. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized mole granite (Australia). Geochim Cosmochim Acta, 2000, 64: 3373-3393
[89]  173 Günther D, Hattendorf B, Audétat A. Multi-element analysis of melt and fluid inclusions with improved detection capabilities for Ca and Fe using laser ablation with a dynamic reaction cell ICP-MS. J Anal At Spectrom, 2001, 16: 1085-1090
[90]  176 Zajacz Z, Kovacs I, Szabo C, et al. Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: A melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary. J Petrol, 2007, 48: 853-883
[91]  177 Severs M J, Beard J S, Fedele L, et al. Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions. Geochim Cosmochim Acta, 2009, 73: 2123-2141
[92]  1 Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. Analyst, 1985, 110: 551-556
[93]  2 Jackson S E, Longerich H P, Dunning G R, et al. The application of laser-ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can Mineral, 1992, 30: 1049-1064
[94]  3 Jenner G A, Foley S F, Jackson S E, et al. Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta, 1993, 57: 5099-5103
[95]  5 Li X H, Liang X R, Sun M, et al. Geochronology and geochemistry of single-grain zircons: Simultaneous in situ analysis of U-Pb age and trace elements by LAM-ICP-MS. Eur J Mineral, 2000, 12: 1015-1024
[96]  11 Günther D, Audétat A, Frischknecht R, et al. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 1998, 13: 263-270
[97]  14 Jarvis K E, Williams J G, Parry S J, et al. Quantitative-determination of the platinum-group elements and gold using NiS fire assay with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Chem Geol, 1995, 124: 37-46
[98]  16 Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 2004, 28: 353-370
[99]  19 Ulrich T, Kamber B S, Jugo P J, et al. Imaging element-distribution patterns in minerals by laser ablation—Inductively coupled plasma-mass spectrometry (LA-ICP-MS). Can Mineral, 2009, 47: 1001-1012
[100]  22 Norman M D, Pearson N J, Sharma A, et al. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses. Geostand Newsl, 1996, 20: 247-261
[101]  25 Stoll B, Jochum K P, Herwig K, et al. An automated iridium-strip heater for LA-ICP-MS bulk analysis of geological samples. Geostand Geoanal Res, 2008, 32: 5-26
[102]  26 Jarvis K E, Williams J G. Laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS): A rapid technique for the direct, quantitative-determination of major, trace and rare-earth elements in geological samples. Chem Geol, 1993, 106: 251-262
[103]  28 Baker S A, Bi M, Aucelio R Q, et al. Analysis of soil and sediment samples by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 1999, 14: 19-26
[104]  29 Fernández B, Claverie F, Pécheyran C, et al. Solid-spiking isotope dilution laser ablation ICP-MS for the direct and simultaneous determination of trace elements in soils and sediments. J Anal At Spectrom, 2008, 23: 367-377
[105]  31 Jackson S E. The application of Nd: YAG lasers in LA-ICP-MS. In: Sylvester P, ed. Laser-ablation-ICPMS in the Earth Sciences: Principles and Applications. Ontario: Mineralogical Association of Canada, 2001. 29-45
[106]  39 Longerich H P, Jackson S E, Günther D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom, 1996, 11: 899-904
[107]  40 Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 2008, 257: 34-43
[108]  41 Jackson S E. Calibration strategies for elemental analysis by LA-ICP-MS. In: Sylvester P, ed. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Quebec: Mineralogical Association of Canada, 2008. 169-188
[109]  50 Tibi M, Heumann K G. Isotope dilution mass spectrometry as a calibration method for the analysis of trace elements in powder samples by LA-ICP-MS. J Anal At Spectrom, 2003, 18: 1076-1081
[110]  51 McCandless T E, Lajack D J, Ruiz J, et al. Trace element determination of single fluid inclusions in quartz by laser ablation ICP-MS. Geostand Geoanal Res, 1997, 21: 279-287
[111]  54 Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res, 1997, 21: 115-144
[112]  56 Rocholl A, Dulski P, Raczek I. New ID-TIMS, ICP-MS and SIMS Data on the Trace Element Composition and Homogeneity of NIST Certified Reference Material SRM 610-611. Geostand Geoanal Res, 2000, 24: 261-274
[113]  60 Rocholl A. Major and trace element composition and homogeneity of microbeam reference material: Basalt glass USGS BCR-2G. Geostand Geoanal Res, 1998, 22: 33-45
[114]  63 Hu M Y, Fan X T, Stoll B, et al. Preliminary characterisation of new reference materials for microanalysis: Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5. Geostand Geoanal Res, 2011, 35: 235-251
[115]  64 Shibuya E K, Sarkis J E S, Enzweiler J, et al. Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high-resolution inductively coupled plasma mass spectrometric technique. J Anal At Spectrom, 1998, 13: 941-944
[116]  65 Ballhaus C, Sylvester P. Noble metal enrichment processes in the Merensky Reef, Bushveld complex. J Petrol, 2000, 41: 545-561
[117]  66 Mungall J E, Andrews D R A, Cabri L J, et al. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim Cosmochim Acta, 2005, 69: 4349-4360
[118]  67 Dewaele S, Muchez P, Hertogen J. Production of a matrix-matched standard for quantitative analysis of iron sulphides by laser ablation inductively coupled plasma-mass spectrometry by welding: A pilot study. Geol Belg, 2007, 10: 109-119
[119]  68 Danyushevsky L, Robinson P, Gilbert S, et al. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochem: Explor Environ, Anal, 2011, 11: 51-60
[120]  69 Ding L, Yang G, Xia F, et al. A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass. Mineral Mag, 2011, 75: 279-287
[121]  70 Perkins W T, Pearce N J G, Westgate J A. The development of laser ablation icp-ms and calibration strategies: Examples from the analysis of trace elements in volcanic glass shards and sulfide minerals. Geostand Geoanal Res, 1997, 21: 175-190
[122]  71 Wilson S A, Ridley W I, Koenig A E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom, 2002, 17: 406-409
[123]  75 Alard O, Griffin W L, Lorand J P, et al. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature, 2000, 407: 891-894
[124]  77 Bédard L P, Baker D R, Machado N. A new technique for the synthesis of geochemical reference samples for laser ablation-ICP-MS analysis of zircons. Chem Geol, 1997, 138: 1-7
[125]  78 Klemme S, Prowatke S, Münker C, et al. Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses. Geostand Geoanal Res, 2008, 32: 39-54
[126]  79 Perkins W T, Fuge R, Pearce N J G. Quantitative analysis of trace elements in carbonates using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 1991, 6: 445-449
[127]  82 Barats A, Pécheyran C, Amouroux D, et al. Matrix-matched quantitative analysis of trace-elements in calcium carbonate shells by laser-ablation ICP-MS: Application to the determination of daily scale profiles in scallop shell (Pecten maximus). Anal Bioanal Chem, 2007, 387: 1131-1140
[128]  84 Eggins S M, Shelley J M G. Compositional heterogeneity in NIST SRM 610-617 glasses. Geostand Geoanal Res, 2002, 26: 269-286
[129]  85 Jochum K P, Stoll B, Herwig K, et al. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J Anal At Spectrom, 2007, 22: 112-121
[130]  88 Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 2010, 51: 537-571
[131]  90 Kent A J R, Jacobsen B, Peate D W, et al. Isotope dilution MC-ICP-MS rare earth element analysis of geochemical reference materials NIST SRM 610, NIST SRM 612, NIST SRM 614, BHVO-2G, BHVO-2, BCR-2G, JB-2, WS-E, W-2, AGV-1 and AGV-2. Geostand Geoanal Res, 2004, 28: 417-429
[132]  92 Hu Z C, Liu Y S, Li M, et al. Results for rarely determined elements in MPI-DING, USGS and NIST SRM glasses using laser ablation ICP-MS. Geostand Geoanal Res, 2009, 33: 319-335
[133]  95 Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem Geol, 2012, 318-319: 31-44
[134]  100 Ko?ler J, Wiedenbeck M, Wirth R, et al. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon-implications for elemental fractionation during ICP-MS analysis. J Anal At Spectrom, 2005, 20: 402-409
[135]  106 Pisonero J, Fliegel D, Günther D. High efficiency aerosol dispersion cell for laser ablation-ICP-MS. J Anal At Spectrom, 2006, 21: 922-931
[136]  107 Bleiner D, Günther D. Theoretical description and experimental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 2001, 16: 449-456
[137]  108 Mank A J G, Mason P R D. A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples. J Anal At Spectrom, 1999, 14: 1143-1153
[138]  109 Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS. Appl Surf Sci, 2003, 207: 144-157
[139]  110 Hirata T. Chemically assisted laser ablation ICP mass spectrometry. Anal Chem, 2003, 75: 228-233
[140]  112 Garcia C C, Lindner H, Niemax K. Laser ablation inductively coupled plasma mass spectrometry-current shortcomings, practical suggestions for improving performance, and experiments to guide future development. J Anal At Spectrom, 2009, 24: 14-26
[141]  113 Günther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trends Anal Chem, 2005, 24: 255-265
[142]  114 Kroslakova I, Günther D. Elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry: Evidence for mass load induced matrix effects in the ICP during ablation of a silicate glass. J Anal At Spectrom, 2007, 22: 51-62
[143]  115 Koch J, Walle M, Pisonero J, et al. Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ~265 and ~200 nm. J Anal At Spectrom, 2006, 21: 932-940
[144]  116 Zong K, Liu Y, Gao C, et al. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chem Geol, 2010, 269: 237-251
[145]  117 柳小明, 高山, 第五春荣. 单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定. 科学通报, 2007, 52: 228-235
[146]  118 Günther D, Heinrich C. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. J Anal At Spectrom, 1999, 14: 1363-1368
[147]  121 Durrant S F. Feasibility of improvement in analytical performance in laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) by addition of nitrogen to the argon plasma. Fresenius J Anal Chem, 1994, 349: 768-771
[148]  122 Luo Y, Gao S, Longerich H P, et al. The uncertainty budget of the multi-element analysis of glasses using LA-ICP-MS. J Anal At Spectrom, 2007, 22: 122-130
[149]  123 Cheatham M M, Sangrey W F, White W M. Sources of error in external calibration ICP-MS analysis of geological samples and an improved non-linear drift correction procedure. Spectrochim Acta, Part B, 1993, 48: 487-506
[150]  126 Gonzalez J J, Oropeza D D, Longerich H, et al. Rapid bulk analysis using femtosecond laser ablation inductively coupled plasma time-of-flight mass spectrometry. J Anal At Spectrom, 2012, 27: 1405-1412
[151]  127 Arroyo L, Trejos T, Gardinali P R, et al. Optimization and validation of a Laser Ablation Inductively Coupled Plasma Mass Spectrometry method for the routine analysis of soils and sediments. Spectrochim Acta, Part B, 2009, 64: 16-25
[152]  128 O’Connor C, Landon M R, Sharp B L. Absorption coefficient modified pressed powders for calibration of laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 2007, 22: 273-282
[153]  130 Becker J S, Dietze H J. Determination of trace elements in geological samples by laser ablation inductively coupled plasma mass spectrometry. Fresenius J Anal Chem, 1999, 365: 429-434
[154]  131 Kurosawa M, Shima K, Ishii S, et al. Trace element analysis of fused whole-rock glasses by laser ablation-ICP-MS and PIXE. Geostand Geoanal Res, 2006, 30: 17-30
[155]  134 Nehring F, Jacob D E, Barth M G, et al. Laser-ablation ICP-MS analysis of siliceous rock glasses fused on an iridium strip heater using MgO dilution. Microchim Acta, 2008, 160: 153-163
[156]  135 Williams J G, Jarvis K E. Preliminary assessment of laser ablation inductively coupled plasma mass spectrometry for quantitative multi-element determination in silicates. J Anal At Spectrom, 1993, 8: 25-34
[157]  136 Van Heuzen A A, Morsink J B W. Analysis of solids by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)—Ⅱ. Matching with a pressed pellet. Spectrochim Acta, Part B, 1991, 46: 1819-1828
[158]  138 Konter J G, Hanan B B, Blichert-Toft J, et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth Planet Sci Lett, 2008, 275: 285-295
[159]  139 朱律运, 刘勇胜, 胡兆初, 等. 玄武岩全岩元素含量快速、准确分析新技术: 双铱带高温炉与LA-ICP-MS联用法. 地球化学, 2011, 40: 407-417
[160]  140 Boulyga S F, Heumann K G. Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS. Int J Mass Spectrom, 2005, 242: 291-296
[161]  141 Mason P R D, Jarvis K E, Downes H, et al. Determination of incompatible trace elements in mantle clinopyroxenes by LA-ICP-MS: A comparison of analytical performance with established techniques. Geostand Geoanal Res, 1999, 23: 157-172
[162]  145 Strnad L, Ettler V, Mihaljevic M, et al. Determination of trace elements in calcite using solution and laser ablation icp-ms: calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite. Geostand Geoanal Res, 2009, 33: 347-355
[163]  146 徐鸿志, 胡圣虹, 胡兆初, 等. 193 nm ArF准分子激光剥蚀等离子体质谱测定富钴结壳中的稀土元素. 分析科学学报, 2005, 21: 119-122
[164]  149 Donohue P H, Simonetti A, Neal C R. Chemical characterisation of natural ilmenite: A possible new reference material. Geostand Geoanal Res, 2012, 36: 61-73
[165]  154 Norman M, Robinson P, Clark D. Major and trace element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF: New data on international reference materials. Can Mineral, 2003, 41: 293-305
[166]  155 Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim Cosmochim Acta, 2009, 73: 4761-4791
[167]  157 袁继海, 詹秀春, 范晨子, 等. 玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用. 分析化学, 2012, 40: 201-207
[168]  158 Axelsson M D, Rodushkin I. Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS. J Geochem Explor, 2001, 72: 81-89
[169]  161 Shepherd T J, Chenery S R. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study. Geochim Cosmochim Acta, 1995, 59: 3997-4007
[170]  163 Ghazi A M, McCandless T E, Vanko D A, et al. New quantitative approach in trace elemental analysis of single fluid inclusions: Applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Anal At Spectrom, 1996, 11: 667-674
[171]  164 Shepherd T J, Ayora C, Cendon D I, et al. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS: Complementary microbeam techniques. Eur J Mineral, 1998, 10: 1097-1108
[172]  165 Allan M M, Yardley B W D, Forbes L J, et al. Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. Am Mineral, 2005, 90: 1767-1775
[173]  167 Seo J H, Guillong M, Aerts M, et al. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chem Geol, 2011, 284: 35-44
[174]  168 Leisen M, Boiron M C, Richard A, et al. Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICPMS analysis: Implications for the origin of salinity in crustal fluids. Chem Geol, 2012, 330-331: 197-206
[175]  169 Taylor R P, Jackson S E, Longerich H P, et al. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta, 1997, 61: 2559-2567
[176]  174 Halter W E, Pettke T, Heinrich C A, et al. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: Methods of quantification. Chem Geol, 2002, 183: 63-86
[177]  175 Zajacz Z, Halter W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: Quantification, data analysis and mineral/melt partitioning. Geochim Cosmochim Acta, 2007, 71: 1021-1040
[178]  178 张春来, 刘勇胜, 高山, 等. 四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示. 地球化学, 2011, 40: 109-125
[179]  179 Guzmics T, Zajacz Z, Kodolanyi J, et al. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth's mantle. Geochim Cosmochim Acta, 2008, 72: 1864-1886

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133