3 Demain A L, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot, 2009, 62: 5-16
[2]
5 Klevens R, Morrison M A, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. J Am Med Assoc, 2007, 298: 1763-1771
[3]
8 Cegelski L, Marshall G R, Eldridge G R, et al. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol, 2008, 6: 17-27
[4]
10 Lowy F D. Staphylococcus aureus infections. N Engl J Med, 1998, 339: 520-532
[5]
11 Hanke M L, Heim C E, Angle A, et al. Targeting macrophage activation for the prevention and treatment of Staphylococcus aureus biofilm infections. J Immunol, 2013, 190: 2159-2168
[6]
18 Goerke C, Fluckiger U, Steinhuber A, et al. Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of a-toxin during device-related infection resolved by direct quantitative transcript analysis. Mol Microbiol, 2001, 40: 1439-1447
[7]
19 Novick R P, Geisinger E. Quorum sensing in Staphylococci. Annu Rev Genet, 2008, 42: 541-564
[8]
21 Mazmanian S K, Liu G, TonThat H, et al. Staphylococcus aureus Sortase, an enzyme that anchors surface proteins to the cell wall. Science, 1999, 285: 760-763
[9]
24 Chen P R, Bae T, Williams W A, et al. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat Chem Biol, 2006, 2: 591-595
[10]
25 Luong T T, Dunman P M, Murphy E, et al. Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol, 2006, 188: 1899-1910
[11]
27 Frees D, Qazi S N A, Hill P J, et al. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol, 2003, 48: 1565-1578
[12]
28 B?ttcher T, Sieber S A. β-Lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 2008, 130: 14400-14401
[13]
29 Pelz A, Wieland K P, Putzbach K, et al. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem, 2005, 280: 32493-32498
[14]
30 Liu C I, Liu G Y, Song Y C, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science, 2008, 319: 1391-1394
[15]
33 Bronner S, Monteil H, Prévost G. Regulation of virulence determinants in Staphylococcus aureus: Complexity and applications. FEMS Microbiol Rev, 2004, 28: 183-200
[16]
34 Thoendel M, Horswill A R. Biosynthesis of peptide signals in gram-positive bacteria. In: Advances in Applied Microbiology. New York: Academic Press, 2010. 91-112
[17]
39 Balaban N, Goldkorn T, Nhan R T, et al. Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science, 1998, 280: 438-440
[18]
44 Otto M. Quorum-sensing control in Staphylococci—A target for antimicrobial drug therapy? FEMS Microbiol Lett, 2004, 241: 135-141
[19]
45 Chong Y P, Kim E S, Park S J, et al. Accessory gene regulator (agr) dysfunction in Staphylococcus aureus bloodstream isolates from South Korean patients. Antimicrob Agents Chemother, 2013, 57: 1509-1512
[20]
46 Ingavale S S, Van Wamel W, Cheung A L. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol Microbiol, 2003, 48: 1451-1466
[21]
47 Truong-Bolduc Q C, Zhang X, Hooper D C. Characterization of NorR protein, a multifunctional regulator of norA Expression in Staphylococcus aureus. J Bacteriol, 2003, 185: 3127-3138
[22]
48 Mazmanian S K, TonThat H, Schneewind O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol, 2001, 40: 1049-1057
[23]
51 Xiong Z, Kapral F A. Carotenoid pigment levels in Staphylococcus aureus and sensitivity to oleic acid. J Med Microbiol, 1992, 37: 192-194
[24]
57 Frees D, Savijoki K, Varmanen P, et al. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol, 2007, 63: 1285-1295
[25]
60 Gough N R. Virulence through cysteine phosphorylation. Sci Signal, 2012, 5: ec251
[26]
61 Clatworthy A E, Pierson E, Hung D T. Targeting virulence: A new paradigm for antimicrobial therapy. Nat Chem Biol, 2007, 3: 541-548
[27]
62 Rasko D A, Moreira C G, Li D R, et al. Targeting qseC signaling and virulence for antibiotic development. Science, 2008, 321: 1078-1080
[28]
1 Raygada J L, Levine D P. Managing CA-MRSA infections: Current and emerging options. Infect Med, 2009, 26: 49-58
[29]
2 Skov R, Christiansen K, Dancer S J, et al. Update on the prevention and control of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA). Int J Antimicrob Agents, 2012, 39: 193-200
[30]
4 Fischbach M A, Walsh C T. Antibiotics for emerging pathogens. Science, 2009, 325: 1089-1093
[31]
6 Rasko D A, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov, 2010, 9: 117-128
[32]
7 Barczak A K, Hung D T. Productive steps toward an antimicrobial targeting virulence. Curr Opin Microbiol, 2009, 12: 490-496
[33]
9 Dancer S J, Kirkpatrick P, Corcoran D S, et al. Approaching zero: Temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum b-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents, 2013, 41: 137-142
[34]
12 Otto M. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides, 2001, 22: 1603-1608
[35]
13 George E A, Muir T W. Molecular mechanisms of agr quorum sensing in virulent Staphylococci. ChemBioChem, 2007, 8: 847-855
[36]
14 Cheung A L, Zhang G. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front Biosci, 2002, 7: 1825-1842
[37]
15 Cheung A L, Nishina K A, Trotonda M P, et al. The SarA protein family of Staphylococcus aureus. Int J Biochem Cell Biol, 2008, 40: 355-361
[38]
16 Giraudo A T, Calzolari A, Cataldi A A, et al. The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol Lett, 1999, 177: 15-22
[39]
17 Steinhuber A, Goerke C, Bayer M G, et al. Molecular architecture of the regulatory locus sae of Staphylococcus aureus and its impact on expression of virulence factors. J Bacteriol, 2003, 185: 6278-6286
[40]
20 Chan W C, Coyle B J, Williams P. Virulence regulation and quorum sensing in Staphylococcal Infections: Competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem, 2004, 47: 4633-4641
[41]
22 Chenna B C, Shinkre B A, King J R, et al. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus Sortase A. Bioorg Med Chem Lett, 2008, 18: 380-385
[42]
23 Luong T T, Newell S W, Lee C Y. mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol, 2003, 185: 3703-3710
[43]
26 Sun F, Zhou L, Zhao B C, et al. Targeting MgrA-mediated virulence regulation in Staphylococcus aureus. Chem Biol, 2011, 18: 1032-1041
[44]
31 Gordon C P, Williams P, Chan W C. Attenuating Staphylococcus aureus virulence gene regulation: A medicinal chemistry perspective. J Med Chem, 2013, 56: 1389-1404
[45]
32 Cheung A L, Bayer A S, Zhang G, et al. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Mic, 2004, 40: 1-9
[46]
35 Yarwood J M, McCormick J K, Paustian M L, et al. Repression of the Staphylococcus aureus accessory gene regulator in serum and in vivo. J Bacteriol, 2002, 184: 1095-1101
[47]
36 Abdelnour A, Arvidson S, Bremell T, et al. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun, 1993, 61: 3879-3885
[48]
37 Montgomery C P, BoyleVavra S, Daum R S. Importance of the global regulators agr and saeRS in the pathogenesis of CA-MRSA USA300 Infection. PLoS One, 2010, 5: e15177
[49]
38 Lyon G J, Wright J S, Muir T W, et al. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry, 2002, 41: 10095-10104
[50]
40 Sklar L A, Gresham H D. Probe report: Small molecule that targets AIP binding interactions in AIP-dependent bacterial quorum sensing. Grant Number: NIH 1 X01 MH07895201, 2012, https://mli.nih.gov/mli/?dl_id=701
[51]
41 Tal-Gan Y, Stacy D M, Foegen M K, et al. Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the group-Ⅲ autoinducing peptide. J Am Chem Soc, 2013, 135: 7869-7882
[52]
42 Jefferson K K. What drives bacteria to produce a biofilm? FEMS Microbiol Lett, 2004, 236: 163-173
[53]
43 Fowler V G, Sakoulas G, McIntyre L M, et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis, 2004, 190: 1140-1149
[54]
49 Mazmanian S K, Liu G, Jensen E R, et al. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci USA, 2000, 97: 5510-5515
[55]
50 Kang S S, Kim J G, Lee T H, et al. Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol Pharm Bull, 2006, 29: 1751-1755
[56]
52 Liu G Y, Essex A, Buchanan J T, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med, 2005, 202: 209-215
[57]
53 PanéFarré J, Jonas B, Hardwick S W, et al. Role of RsbU in controlling SigB activity in Staphylococcus aureus following alkaline stress. J Bacteriol, 2009, 191: 2561-2573
[58]
54 Lee J-H, Park J-H, Cho M, et al. Flavone reduces the production of virulence factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus. Curr Microbiol, 2012, 65: 726-732
[59]
55 Sakai K, Koyama N, Fukuda T, et al. Search method for inhibitors of staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol Pharm Bull, 2012, 35: 48-53
[60]
56 Yu A Y H, Houry W A. ClpP: A distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett, 2007, 581: 3749-3757
[61]
58 Li M, Du X, Villaruz A E, et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med, 2012, 18: 816-819
[62]
59 Sun F, Ding Y, Ji Q, et al. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci USA, 2012, 109: 15461-15466
[63]
63 Hung D T, Shakhnovich E A, Pierson E, et al. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science, 2005, 310: 670-674