1 Novoselov K, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666-669
[2]
2 Neto A C, Guinea F, Peres N, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109
[3]
8 Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183-191
[4]
9 Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438: 201-204
[5]
13 Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466: 470-473
[6]
14 Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458: 872-876
[7]
15 Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136: B864
[8]
16 Kohn W, Sham L. Quantum density oscillations in an inhomogeneous electron gas. Phys Rev, 1965, 137: 1697-1706
[9]
17 Burke K, Gross E. A guided tour of time-dependent density functional theory. In: Joubert D, ed. Density Functionals: Theory and Applications. Berlin: Springer, 1998. 116-146
[10]
18 Aryasetiawan F, Gunnarsson O. The GW method. Rep Prog Phys, 1998, 61: 237
[11]
19 Heyd J, Scuseria G E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J Chem Phys, 2004, 121: 1187
[12]
20 Segall M, Lindan P J, ProberT M, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys: Condens Matter, 2002, 14: 2717
[13]
23 Lahiri J, Lin Y, Bozkurt P, et al. An extended defect in graphene as a metallic wire. Nat Nanotechnol, 2010, 5: 326-329
[14]
25 Rodriguez-Manzo J A, Banhart F. Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 ? diameter. Nano Lett, 2009, 9: 2285-2289
[15]
34 Ouyang F P, Peng S L, Liu Z F, et al. Bandgap opening in graphene antidot lattices: The missing half. ACS Nano, 2011, 5: 4023-4030
[16]
45 Coraux J, N'diaye A T, Busse C, et al. Structural coherency of graphene on Ir(111). Nano Lett, 2008, 8: 565-570
[17]
51 Han M Y, ?zyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98: 206805
[18]
52 Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B, 1996, 54: 17954
[19]
53 Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Phys Rev Lett, 2006, 97: 216803
[20]
56 Huang B, Liu F, Wu J, et al. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Phys Rev B, 2008, 77: 153411
[21]
57 Koskinen P, Malola S H, Kinen H. Self-passivating edge reconstructions of graphene. Phys Rev Lett, 2008, 101: 115502
[22]
59 Li J, Li Z, Zhou G, et al. Spontaneous edge-defect formation and defect-induced conductance suppression in graphene nanoribbons. Phys Rev B, 2010, 82: 115410
[23]
60 Li H D, Wang L, Zheng Y S. Suppressed conductance in a metallic graphene nanojunction. J Appl Phys, 2009, 105: 013703
[24]
62 Yan Q, Huang B, Yu J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett, 2007, 7: 1469-1473
[25]
63 Huang B, Yan Q, Zhou G, et al. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl Phys Lett, 2007, 91: 253122
[26]
64 Areshkin D A, White C T. Building blocks for integrated graphene circuits. Nano Lett, 2007, 7: 3253-3259
[27]
65 Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Phys Rev Lett, 2006, 97: 216803
[28]
66 Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006, 444: 347-349
[29]
67 Kim W Y, Kim K S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nanotechnol, 2008, 3: 408-412
[30]
68 Li Z, Qian H, Wu J, et al. Role of symmetry in the transport properties of graphene nanoribbons under bias. Phys Rev Lett, 2008, 100: 206802
[31]
69 Biel B, Blase X, Triozon F, et al. Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett, 2009, 102: 096803
[32]
70 Ren Y, Chen K Q. Effects of symmetry and Stone-Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J Appl Phys, 2010, 107: 044514
[33]
76 Wang X R, Li X L, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia. Science, 2009, 324: 768-771
[34]
79 Leenaerts O, Partoens B, Peeters F. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys Rev B, 2008, 77: 125416
[35]
80 Leenaerts O, Partoens B, Peeters F. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys Rev B, 2009, 79: 235440
[36]
81 Wehling T O, Lichtenstein A I, Katsnelson M I. First-principles studies of water adsorption on graphene: The role of the substrate. Appl Phys Lett, 2008, 93: 202110
[37]
82 Sun J T, Lu Y H, Chen W, et al. Linear tuning of charge carriers in graphene by organic molecules and charge-transfer complexes. Phys Rev B, 2010, 81: 155403
[38]
86 Coletti C, Riedl C, Lee D, et al. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys Rev B, 2010, 81: 235401
[39]
87 Si C, Duan W H, Liu Z, et al. Electronic strengthening of graphene by charge doping. Phys Rev Lett, 2012, 109: 226802
[40]
88 Si C, Liu Z, Duan W H, et al. First-principles calculations on the effect of doping and biaxial tensile strain on electron-phonon coupling in graphene. Phys Rev Lett, 2013, 111: 196802
[41]
89 Ribeiro R, Peres N, Contnho J, et al. Induing energy garpsin monolayer and bilayer graphene with molecular doping. ACS Nano, 2011, 5: 7517-7524
[42]
90 Choi S M, Jhi S H. Self-assembled metal atom chains on graphene nanoribbons. Phys Rev Lett, 2008, 101: 266105
[43]
91 Krasheninnikov A, Lehtinen P, Foster A, et al. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys Rev Lett, 2009, 102: 126807
[44]
92 Sofo J O, Chaudhari A S, Barber G D. Graphane: A two-dimensional hydrocarbon. Phys Rev B, 2007, 75: 153401
[45]
96 Haberer D, Vyalikh D, Taioli S, et al. Tunable band gap in hydrogenated quasi-free-standing graphene. Nano Lett, 2010, 10: 3360-3366
[46]
97 Zhou J, Wang Q, Sun Q, et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett, 2009, 9: 3867-3870
[47]
98 Sahin H, Ataca C, Ciraci S. Magnetization of graphane by dehydrogenation. Appl Phys Lett, 2009, 95: 222510
[48]
101 Varchon F, Feng R, Hass J, et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys Rev Lett, 2007, 99: 126805
[49]
105 Magaud L, Hiebel F, Varchon F, et al. Graphene on the C-terminated SiC (0001(-)) surface: An ab initio study. Phys Rev B, 2009, 79: 161405
[50]
107 Virojanadara C, Watcharinyanon S, Zakharov A, et al. Epitaxial graphene on 6H-SiC and Li intercalation. Phys Rev B, 2010, 82: 205402
[51]
108 OidA S, Mcfeely F, Hannon J, et al. Decoupling graphene from SiC (0001) via oxidation. Phys Rev B, 2010, 82: 041411
[52]
110 Gierz I, Suzuki T, Weitz R T, et al. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys Rev B, 2010, 81: 235408
[53]
111 Li Y, Zhou G, Li J, et al. Lithium intercalation induced decoupling of epitaxial graphene on SiC(0001): Electronic property and dynamic process. J Phys Chem C, 2011, 115: 23992
[54]
115 Li Y, Chen P C, Zhou G, et al. Dirac fermions in strongly bound graphene systems. Phys Rev Lett, 2012, 109: 206802
[55]
118 Sutter P, Sadowski J T, Sutter E. Graphene on Pt(111): Growth and substrate interaction. Phys Rev B, 2009, 80: 245411
[56]
120 Shikin A, Adamchuk V, Rieder K H. Formation of quasi-free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers. Phys Solid State, 2009, 51: 2390-2400
[57]
122 Hammer B N, Rskov J K. Theoretical surface science and catalysis—Calculations and concepts. Adv Catal, 2000, 45: 71-129
[58]
124 Zheng F W, Zhou G, Liu Z R, et al. Half metallicity along the edge of zigzag boron nitride nanoribbons. Phys Rev B, 2008, 78: 205415
[59]
127 Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699-712
[60]
128 Ci L J, Song L, Jin C H, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010, 9: 430-435
[61]
129 Huang B, Lee H, Gu B L, et al. Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures. Nano Res, 2012, 5: 62-72
[62]
130 Huang B, Si C, Lee H, et al. Intrinsic half-metallic BN-C nanotubes. Appl Phys Lett, 2010, 97: 043115
[63]
131 Li G, Li Y, Qian X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J Phys Chem C, 2011, 115: 2611-2615
[64]
132 Huang H, Duan W H, Liu Z. The existence/absence of Dirac cones in graphynes. New J Phys, 2013, 15: 023004
[65]
133 Britnell L, Gorbachev R, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335: 947-950
[66]
95 Xiang H, Kan E, Wei S H, et al. Thermodynamically stable single-side hydrogenated graphene. Phys Rev B, 2010, 82: 165425
[67]
99 De Heer W A, Berger C, Wu X, et al. Epitaxial graphene. Solid State Commun, 2007, 143: 92-100
[68]
100 Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191-1196
[69]
102 Hiebel F, Mallet P, Varchon F, et al. Graphene-substrate interaction on 6H-SiC (0001(-)): A scanning tunneling microscopy study. Phys Rev B, 2008, 78: 153412
[70]
103 Hiebel F, Mallet P, Magaud L, et al. Atomic and electronic structure of monolayer graphene on 6H-SiC (0001(-))(3×3): A scanning tunneling microscopy study. Phys Rev B, 2009, 80: 235429
[71]
104 Emtsev K, Speck F, Seyller T, et al. Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study. Phys Rev B, 2008, 77: 155303
[72]
106 Riedl C, Coletti C, Iwasaki T, et al. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys Rev Lett, 2009, 103: 246804
[73]
109 Walter A L, Jeon K J, Bostwick A, et al. Highly p-doped epitaxial graphene obtained by fluorine intercalation. Appl Phys Lett, 2011, 98: 184102
[74]
112 Jayasekera T, Kong B, Kim K, et al. Band engineering and magnetic doping of epitaxial graphene on SiC(0001). Phys Rev Lett, 2010, 104: 146801
[75]
113 Si C, Zhou G, Li Y, et al. Interface engineering of epitaxial graphene on SiC (0001(-)) via fluorine intercalation: A first principles study. Appl Phys Lett, 2012, 100: 103105
[76]
114 Cheng Y, Schwingenschl G L U. A route to strong p-doping of epitaxial graphene on SiC. Appl Phys Lett, 2010, 97: 193304
[77]
116 Batzill M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf Sci Rep, 2012, 67: 83-115
[78]
117 Giovannetti G, Khomyakov P, Brocks G, et al. Doping graphene with metal contacts. Phys Rev Lett, 2008, 101: 026803
[79]
119 Marchenko D, Varykhalov A, Rybkin A, et al. Atmospheric stability and doping protection of noble-metal intercalated graphene on Ni(111). Appl Phys Lett, 2011, 98: 122111
[80]
121 Wang B, Bocquet M L, Marchini S, et al. Chemical origin of a graphene moire overlayer on Ru(0001). Phys Chem Chem Phys, 2008, 10: 3530-3534
[81]
123 Voloshina E, Dedkov Y. Graphene on metallic surfaces: Problems and perspectives. Phys Chem Chem Phys, 2012, 14: 13502-13514
[82]
125 Zheng F, Liu Z, Wu J, et al. Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes. Phys Rev B, 2008, 78: 085423
[83]
126 Li J, Zhou G, Chen Y, et al. Magnetism of C adatoms on BN nanostructures: Implications for functional nanodevices. J Am Chem Soc, 2009, 131: 1796-1801
[84]
3 Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett, 2011, 11: 2396-2399
[85]
4 Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nat Mater, 2011, 10: 569-581
[86]
5 Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene. Appl Phys Lett, 2007, 91: 163513
[87]
6 Nair R, Blake P, Grigorenko A, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320: 1308
[88]
7 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385-388
[89]
10 Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558-1565
[90]
11 Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108: 19912-19916
[91]
12 Li X S, Cai W W, An J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312-1314
[92]
21 El-Barbary A, Telling R, Ewels C, et al. Structure and energetics of the vacancy in graphite. Phys Rev B, 2003, 68: 144107
[93]
22 Ma J, Alfè D, Michaelides A, et al. Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys Rev B, 2009, 80: 033407
[94]
24 Krasheninnikov A, Banhart F. Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater, 2007, 6: 723-733
[95]
26 Bagri A, Mattevi C, Acik M, et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem, 2010, 2: 581-587
[96]
27 Balog R J, Rgensen B, Nilsson L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat Mater, 2010, 9: 315-319
[97]
28 Tang P Z, Chen P C, Wu J, et al. Metallicity retained by covalent functionalization of graphene with phenyl groups. Nanoscale, 2013, 5: 7537-7543
[98]
29 Palacios J, Fernndez-Rossier J, Brey L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys Rev B, 2008, 77: 195428
[99]
30 Kan E J, Li Z Y, Yang J L. Magnetism in graphene systems. Nano, 2008, 3: 433-442
[100]
31 Yazyev O V, Helm L. Defect-induced magnetism in graphene. Phys Rev B, 2007, 75: 125408
[101]
32 Pedersen T, Flindt C, Pedersen J G, et al. Graphene antidot lattices: Designed defects and spin qubits. Phys Rev Lett, 2008, 100: 136804
[102]
33 Singh A K, Penev E S, Yakobson B I. Vacancy clusters in graphane as quantum dots. ACS Nano, 2010, 4: 3510-3514
[103]
35 Yu D, Lupton E M, Liu M, et al. Collective magnetic behavior of graphene nanohole superlattices. Nano Res, 2008, 1: 56-62
[104]
36 Boukhvalov D, Katsnelson M. Chemical functionalization of graphene with defects. Nano Lett, 2008, 8: 4373-4379
[105]
37 Carlsson J M, Hanke F, Linic S, et al. Two-step mechanism for low-temperature oxidation of vacancies in graphene. Phys Rev Lett, 2009, 102: 166104
[106]
38 Sanyal B, Eriksson O, Jansson U, et al. Molecular adsorption in graphene with divacancy defects. Phys Rev B, 2009, 79: 113409
[107]
39 Si C, Zhou G. Size-dependent chemical reactivity of porous graphene for purification of exhaust gases. J Chem Phys, 2012, 137: 184309
[108]
40 Rodriguez-Manzo J A, Cretu O, Banhart F. Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano, 2010, 4: 3422-3428
[109]
41 Siwy Z S, Davenport M. Nanopores: Graphene opens up to DNA. Nat Nanotechnol, 2010, 5: 697-698
[110]
42 Albrecht T, Mizes H, Nogami J, et al. Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects. Appl Phys Lett, 1988, 52: 362-364
[111]
43 Hashimoto A, Suenaga K, Gloter A, et al. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430: 870-873
[112]
44 Miller D L, Kubista K D, Rutter G M, et al. Observing the quantization of zero mass carriers in graphene. Science, 2009, 324: 924-927
[113]
46 Loginova E, Nie S, Th Rmer K, et al. Defects of graphene on Ir(111): Rotational domains and ridges. Phys Rev B, 2009, 80: 085430
[114]
47 Park H J, Meyer J, Roth S, et al. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon, 2010, 48: 1088-1094
[115]
48 Yazyev O V, Louie S G. Electronic transport in polycrystalline graphene. Nat Mater, 2010, 9: 806-809
[116]
49 Botello-Mendez A R, Lopez-Urias F, Cruz-Silva E, et al. The importance of defects for carbon nanoribbon based electronics. Phys Status Solidi-Rapid Res Lett, 2009, 3: 181-183
[117]
50 Grantab R, Shenoy V B, Ruoff R S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science, 2010, 330: 946-948
[118]
54 Barone V, Hod O, Scuseria G E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett, 2006, 6: 2748-2754
[119]
55 Huang B, Liu M, Su N H, et al. Quantum manifestations of graphene edge stress and edge instability: A first-principles study. Phys Rev Lett, 2009, 102: 166404
[120]
58 Li T, Lu S P. Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B, 2008, 77: 085408
[121]
61 Lu X L, Zheng Y S, Xin H W, et al. Spin polarized electron transport through a graphene nanojunction. Appl Phys Lett, 2010, 96: 132108
[122]
71 Chen P C, Li Y, Si C, et al. First-principles study of hydrogenated carbon nanotubes: A promising route for bilayer graphene nanoribbons. Appl Phys Lett, 2012, 101: 033105
[123]
72 Zheng H, Duley W. First-principles study of edge chemical modifications in graphene nanodots. Phys Rev B, 2008, 78: 045421
[124]
73 Kan E J, Li Z, Yang J, et al. Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc, 2008, 130: 4224-4225
[125]
74 Li Z, Huang B, Duan W H. The half-metallicity of zigzag graphene nanoribbons with asymmetric edge terminations. J Nanosci Nanotechnol, 2010, 10: 5374-5378
[126]
75 Huang B, Li Z, Liu Z, et al. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C, 2008, 112: 13442-13446
[127]
77 Schedin F, Geim A, Morozov S, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6: 652-655
[128]
78 Wehling T, Novoselov K, Morozov S, et al. Molecular doping of graphene. Nano Lett, 2008, 8: 173-177
[129]
83 Li Y, Chen X, Zhou G, et al. Trends in charge transfer and spin alignment of metallocene on graphene. Phys Rev B, 2011, 83: 195443
[130]
84 Lu Y H, Chen W, Feng Y P, et al. Tuning the electronic structure of graphene by an organic molecule. J Phys Chem B, 2008, 113: 2-5
[131]
85 Tian X Q, Xu J B, Wang X M. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field. J Phys Chem B, 2010, 114: 11377-11381
[132]
93 Elias D, Nair R, Mohiuddin T, et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323: 610-613
[133]
94 Duplock E J, Scheffler M, Lindan P J. Hallmark of perfect graphene. Phys Rev Lett, 2004, 92: 225502