1 Kaufman L, Bernstein H. Computer Calculation of Phase Diagram. New York: Academic Press Inc., 1970
[2]
2 United States Patent and Trademark Office. Trademark Electronic Search System (TESS): Materials Genome (http://tess2.uspto.gov/), November 2012
[3]
3 National Science and Technology Council. Materials Genome Initiative for Global Competitiveness. http://www.whitehouse.gov/sites/ default/files/microsites/ostp/materials_genome_initiative-final.pdf. Office of Science and Technology Policy, Washington DC, June 2011
[4]
4 Kaufman L. The lattice stability of metals. 1. Titanium and zirconium. Acta Metall, 1959, 7: 575-587
[5]
10 Olson G B. Computational design of hierarchically structured materials. Science, 1997, 277: 1237-1242
[6]
13 Drautz R, Fahnle M. Parametrization of the magnetic energy at the atomic level. Phys Rev B, 2005, 72: 212405
[7]
16 Colinet C, Pasturel A. Electronic theory of phase stability in substitutional alloys: Application to the Au-Ni system. J Alloy Compd, 2000, 296: 6-19
[8]
19 Shang S L, Wang Y, Liu Z K. Thermodynamic fluctuations between magnetic states from first-principles phonon calculations: The case of bcc Fe. Phys Rev B, 2010, 82: 014425
[9]
20 Shang S L, Saal J E, Mei Z G, et al. Magnetic thermodynamics of fcc Ni from first-principles partition function approach. J Appl Phys, 2010, 108: 123514
[10]
21 Wang Y, Shang S L, Zhang H, et al. Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype. Philos Mag Lett, 2010, 90: 851-859
[11]
22 Liu Z K, Wang Y, Shang S L. Origin of negative thermal expansion phenomenon in solids. Scripta Mater, 2011, 65: 664-667
[12]
23 Shang S, Wang Y, Liu Z K. ESPEI: Extensible, self-optimizing phase equilibrium infrastructure for magnesium alloys. In: Agnew S R, Neelameggham N R, Nyberg E A, et al., eds. Magnesium Technology Symposium 2010, Seattle, WA, USA. Warrendale: Minerals, Metals & Materials Society, 2010. 617-622
[13]
24 Liu Z K, Li X Y, Zhang Q M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl Phys Lett, 2012, 101: 082904
[14]
5 Liu Z K, Chen L Q, Spear K E, et al. An integrated education program on computational thermodynamics, kinetics, and materials design. http://www.tms.org/pubs/journals/JOM/0312/LiuII/LiuII-0312.html, 2003
[15]
6 Liu Z K, Chen L Q, Raghavan R, et al. An integrated framework for multi-scale materials simulation and design. J Comput-Aided Mater Des, 2004, 11: 183-199
[16]
7 Kohn W, Sham L. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: 1133-1138
[17]
8 Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics. J Phase Equilib Diffus, 2009, 30: 517-534
[18]
9 Liu Z K. A materials research paradigm driven by computation. JOM, 2009, 61: 18-20
[19]
11 Campbell C E, Kattner U R, Liu Z K. File and data repositories for Next Generation CALPHAD. Scr Mater, 2013, http://dx.doi.org/ 10.1016/j.scriptamat.2013.06.013
[20]
12 Liu Z K, McDowell D L. Center for computational materials design (CCMD) and its education vision. In: Fahrenholtz B, Kimel A, Cantonwine P E, eds. Materials Science and Technology (MS&T) 2006: Fundamentals and Characterization: Vol. 1, Cincinnati, Ohio, 2006. 111-118
[21]
14 Lavrentiev M Y, Nguyen-Manh D, Dudarev S L. Magnetic cluster expansion model for bcc-fcc transitions in Fe and Fe-Cr alloys. Phys Rev B, 2010, 81: 184202
[22]
15 Asta M, McCormack R, Defontaine D. Theoretical study of alloy phase stability in the Cd-Mg system. Phys Rev B, 1993, 48: 748-766
[23]
17 Wang Y, Hector L G, Zhang H, et al. Thermodynamics of the Ce gamma-alpha transition: Density-functional study. Phys Rev B, 2008, 78: 104113
[24]
18 Wang Y, Hector L G, Zhang H, et al. A thermodynamic framework for a system with itinerant-electron magnetism. J Phys-Condes Matter, 2009, 21: 326003