全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

材料基因组计划中的高通量实验方法

DOI: 10.1360/csb2013-58-35-3647, PP. 3647-3655

Keywords: 高通量实验,扩散多元节,微区分析,材料性能,数据库

Full-Text   Cite this paper   Add to My Lib

Abstract:

材料基因组计划中的材料创新基础设施主要由3部分组成计算工具、实验工具和数据库.本文将介绍一些实验工具,特别是高通量高空间分辨率的材料性能测试方法及其应用.利用这些实验工具进行材料性能测量,可以在具有成分梯度的样品如扩散多元节试样上快速高效地获得成分-相-结构-性能的关系,从而为建立材料性能数据库提供必需的实验结果.同时也可以发现一些异常效应并结合微区取样分析和理论计算来解释这些异常效应,以提高模型的预测能力.目前已经可以从微米尺度快速测定材料的一些性能,如硬度、弹性模量、热导率、比热容和热膨胀系数等,更多的材料性能微米尺度的测试方法正在开发中,这些高通量的实验方法将是材料基因组计划的重要内容之一.

References

[1]  2 Zhao J C. A combinatorial approach for structural materials. Adv Eng Mater, 2001, 3: 143-147
[2]  3 Zhao J C. A combinatorial approach for efficient mapping of phase diagrams and properties. J Mater Res, 2001, 16: 1565-1578
[3]  4 Zhao J C. The diffusion-multiple approach to designing alloys. Annu Rev Mater Sci, 2005, 35: 51-73
[4]  5 Zhao J C, Jackson M R, Peluso L A, et al. A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM, 2002, 54: 42-45
[5]  6 Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instrum, 2004, 75: 5119-5123
[6]  7 Huxtable S, Cahill D G, Fauconnier V, et al. Thermal conductivity imaging at micrometer-scale resolution for combinatorial studies of materials. Nat Mater, 2004, 3: 298-301
[7]  8 Zheng X, Cahill D G, Zhao J C. Thermal conductivity imaging of thermal barrier coatings. Adv Eng Mater, 2005, 7: 622-626
[8]  9 Zheng X, Cahill D G, Weaver R, et al. Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection. J Appl Phys, 2008, 104: 073509
[9]  10 Wei C, Zheng X, Cahill D G, et al. Micron resolution spatially-resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev Sci Instrum, 2013, 84: 071301
[10]  12 Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals. Oxford, UK: Pergamon Press, 1970
[11]  15 Kattner U R. The thermodynamic modeling of multicomponent phase equilibria. JOM, 1997, 49: 14-19
[12]  16 Zhao J C, Zheng X, Cahill D G. High-throughput measurements of materials properties. JOM, 2011, 63: 40-44
[13]  19 Shao G, Tsakiropoulos P. Solidification structures of Ti-Al-Cr alloys. Intermetallics, 1999, 7: 579-587
[14]  20 Jin Z. A study of the range of stability of sigma phase in some ternary systems. Scand J Metall, 1981, 10: 279-287
[15]  22 Zhao J C, Zheng X, Cahill D G. Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Script Mater, 2012, 66: 935-938
[16]  27 Guillaume C E. The anomaly of the nickel-steels. Proc Phys Soc London, 1920, 32: 374-404
[17]  28 Zheng X, Cahill D G, Zhao J C. Effect of MeV ion irradiation on the coefficient of thermal expansion of Fe-Ni Invar alloys: A combinatorial study. Acta Mater, 2010, 58: 1236-1241
[18]  29 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7: 1564-1583
[19]  30 Doerner M F, Nix W D. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res, 1986, 1: 601-609
[20]  31 Lee T, Ohmori K, Shin C S, et al. Elastic constants of single-crystal TiNx (001) (0.67£x£1.0) determined as a function of x by picosecond ultrasonic measurements. Phys Rev B, 2005, B71: 144106
[21]  32 Schmidt A J, Cheaito R, Chiesa M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev Sci Instrum, 2009, 80: 094901
[22]  39 Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986-989
[23]  40 Uchic M D, Dimiduk D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater Sci Eng A, 2005, 400-401: 268-278
[24]  42 Uchic M D, Groeber M A, Dimiduk D M, et al. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater, 2006, 55: 23-28
[25]  45 Schwartz A J, Kumar M, Adams B L, et al. Electron Backscatter Diffraction in Materials Science. New York: Kluwer Academic/Plenum, 2000
[26]  47 Zurob H S, Hutchinson C R, Brechet Y, et al. Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys. Acta Mater, 2009, 57: 2781-2792
[27]  48 Hutchinson C R, Fuchsmann A, Zurob H S, et al. A novel experiamental approach to identifying kinetic transitions in solid state phase transformations. Scripta Mater, 2004, 50: 285-289
[28]  52 Maier W F, Stowe K, Sieg S. Combinatorial and high-throughput materials science. Angew Chem Int Ed, 2007, 46: 6016-6067
[29]  55 Amis E J, Xiang X D, Zhao J C. Combinatorial materials science: What’s new since Edison. MRS Bull, 2002, 27: 295-300
[30]  56 National Research Council. Application of Lightweighting Technology in Military Aircraft, Vessels and Vehicles. Washington DC: The National Academies Press, 2011. 118-119
[31]  57 Robertson I M, Schuh C A, Vetrano J S, et al. Towards an integrated materials characterization toolbox. J Mater Res, 2011, 26: 1341-1383
[32]  1 Collins F S, Morgan M, Patrinos A. The human genome project: Lessons from large-scale biology. Science, 2003, 300: 286-290
[33]  11 Xiang X D, Sun X, Brice?o G, et al. A combinatorial approach to materials discovery. Science, 1995, 268: 1738-1740
[34]  13 Saunders N, Miodownik A P. CALPHAD: A Comprehensive Guide. Oxford, UK: Pergamon/Elsevier, 1998
[35]  14 Lukas H L, Fries S G, Sundman B. Computational Thermodynamics: The CALPHAD Method. Cambridge, UK: Cambridge University Press, 2007
[36]  17 Oikawa K, Qin G W, Ikeshoji T, et al. Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co-Cr system. Acta Mater, 2002, 50: 2223-2232
[37]  18 Zhao J C. Reliability of the diffusion-multiple approach for phase diagram mapping. J Mater Sci, 2004, 12: 3913-3925
[38]  21 Zhang Q, Zhao J C. Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simula- tion method. Intermetallics, 2013, 34: 132
[39]  23 Terada Y, Ohkubo K, Mohri T, et al. Thermal conductivity in nickel solid solutions. J Appl Phys, 1997, 81: 2263-2268
[40]  24 Terada Y, Ohkubo K, Mohri T, et al. A comparative study of thermal conductivity in alloys and compounds. Mater Sci Eng A, 2000, 278: 292-294
[41]  25 Zhao J C. Combinatorial aproaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Prog Mater Sci, 2006, 51: 557-631
[42]  26 Cahill D G, Zheng X, Zhao J C. Spatially resolved measurements of thermal stresses by picosecond time-domain probe beam deflection. J Therm Stresses, 2010, 33: 9-14
[43]  33 Takeuchi I, Yang W, Chang K S, et al. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads. J Appl Phys, 2003, 94: 7336-7340
[44]  34 Fukumura T, Ohtani M, Kawasaki M, et al. Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl Phys Lett, 2000, 77: 3426-3428
[45]  35 Wei T, Xiang X D, Wallace-Freedman W G, et al. Scanning tip microwave near-field microscope. Appl Phys Lett, 1996, 68: 3506-3508
[46]  36 Gao C, Wei T, Duewer F, et al. High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope. Appl Phys Lett, 1997, 71: 1872-1874
[47]  37 Boggild P, Grey F, Hassenkam T, et al. Direct measurement of the microscale conjugated polymer monolayers. Adv Mater, 2000, 12: 947-949
[48]  38 Chung S Y, Chiang Y M. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem Solid State Lett, 2003, 6: A278-A281
[49]  41 DeHoff R T. Quantitative serial sectioning analysis: Preview. J Microsc, 1983, 131: 259-263
[50]  43 Echlin M P, Mottura A, Torbet C J, et al. A new TriBeam system for three-dimensional multimodal materials analysis. Rev Sci Instrum, 2012, 83: 023701
[51]  44 Dingley D J, Randle V. Microtexture determination by electron back-scatter diffraction. J Mater Sci, 1992, 27: 4545-4566
[52]  46 Miao J, Pollock T M, Jones J W. Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater, 2012, 60: 2840-2854
[53]  49 Jandeleit B, Schaefer D J, Powers T S, et al. Combinatorial materials science and catalysis. Angew Chem Int Ed, 1999, 38: 2494-2532
[54]  50 Fukumura T, Yamada Y, Toyosaki H, et al. Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl Surf Sci, 2004, 223: 62-67
[55]  51 Koinuma H, Takeuchi I. Combinatorial solid-state chemistry of inorganic materials. Nat Mater, 2004, 3: 429-438
[56]  53 Xiang X D. Combinatorial materials synthesis and screening: An integrated materials chip approach to discovery and optimization of functional materials. Annu Rev Mater Sci, 1999, 29: 149-171
[57]  54 Potyrailo R A, Mirsky V M. Combinatorial and high-throughput development of sensing materials: The first ten years. Chem Rev, 2008, 108: 770-813

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133