2 Zhao J C. A combinatorial approach for structural materials. Adv Eng Mater, 2001, 3: 143-147
[2]
3 Zhao J C. A combinatorial approach for efficient mapping of phase diagrams and properties. J Mater Res, 2001, 16: 1565-1578
[3]
4 Zhao J C. The diffusion-multiple approach to designing alloys. Annu Rev Mater Sci, 2005, 35: 51-73
[4]
5 Zhao J C, Jackson M R, Peluso L A, et al. A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM, 2002, 54: 42-45
[5]
6 Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instrum, 2004, 75: 5119-5123
[6]
7 Huxtable S, Cahill D G, Fauconnier V, et al. Thermal conductivity imaging at micrometer-scale resolution for combinatorial studies of materials. Nat Mater, 2004, 3: 298-301
[7]
8 Zheng X, Cahill D G, Zhao J C. Thermal conductivity imaging of thermal barrier coatings. Adv Eng Mater, 2005, 7: 622-626
[8]
9 Zheng X, Cahill D G, Weaver R, et al. Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection. J Appl Phys, 2008, 104: 073509
[9]
10 Wei C, Zheng X, Cahill D G, et al. Micron resolution spatially-resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev Sci Instrum, 2013, 84: 071301
[10]
12 Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals. Oxford, UK: Pergamon Press, 1970
[11]
15 Kattner U R. The thermodynamic modeling of multicomponent phase equilibria. JOM, 1997, 49: 14-19
[12]
16 Zhao J C, Zheng X, Cahill D G. High-throughput measurements of materials properties. JOM, 2011, 63: 40-44
[13]
19 Shao G, Tsakiropoulos P. Solidification structures of Ti-Al-Cr alloys. Intermetallics, 1999, 7: 579-587
[14]
20 Jin Z. A study of the range of stability of sigma phase in some ternary systems. Scand J Metall, 1981, 10: 279-287
[15]
22 Zhao J C, Zheng X, Cahill D G. Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Script Mater, 2012, 66: 935-938
[16]
27 Guillaume C E. The anomaly of the nickel-steels. Proc Phys Soc London, 1920, 32: 374-404
[17]
28 Zheng X, Cahill D G, Zhao J C. Effect of MeV ion irradiation on the coefficient of thermal expansion of Fe-Ni Invar alloys: A combinatorial study. Acta Mater, 2010, 58: 1236-1241
[18]
29 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7: 1564-1583
[19]
30 Doerner M F, Nix W D. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res, 1986, 1: 601-609
[20]
31 Lee T, Ohmori K, Shin C S, et al. Elastic constants of single-crystal TiNx (001) (0.67£x£1.0) determined as a function of x by picosecond ultrasonic measurements. Phys Rev B, 2005, B71: 144106
[21]
32 Schmidt A J, Cheaito R, Chiesa M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev Sci Instrum, 2009, 80: 094901
[22]
39 Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986-989
[23]
40 Uchic M D, Dimiduk D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater Sci Eng A, 2005, 400-401: 268-278
[24]
42 Uchic M D, Groeber M A, Dimiduk D M, et al. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater, 2006, 55: 23-28
[25]
45 Schwartz A J, Kumar M, Adams B L, et al. Electron Backscatter Diffraction in Materials Science. New York: Kluwer Academic/Plenum, 2000
[26]
47 Zurob H S, Hutchinson C R, Brechet Y, et al. Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys. Acta Mater, 2009, 57: 2781-2792
[27]
48 Hutchinson C R, Fuchsmann A, Zurob H S, et al. A novel experiamental approach to identifying kinetic transitions in solid state phase transformations. Scripta Mater, 2004, 50: 285-289
[28]
52 Maier W F, Stowe K, Sieg S. Combinatorial and high-throughput materials science. Angew Chem Int Ed, 2007, 46: 6016-6067
[29]
55 Amis E J, Xiang X D, Zhao J C. Combinatorial materials science: What’s new since Edison. MRS Bull, 2002, 27: 295-300
[30]
56 National Research Council. Application of Lightweighting Technology in Military Aircraft, Vessels and Vehicles. Washington DC: The National Academies Press, 2011. 118-119
[31]
57 Robertson I M, Schuh C A, Vetrano J S, et al. Towards an integrated materials characterization toolbox. J Mater Res, 2011, 26: 1341-1383
[32]
1 Collins F S, Morgan M, Patrinos A. The human genome project: Lessons from large-scale biology. Science, 2003, 300: 286-290
[33]
11 Xiang X D, Sun X, Brice?o G, et al. A combinatorial approach to materials discovery. Science, 1995, 268: 1738-1740
[34]
13 Saunders N, Miodownik A P. CALPHAD: A Comprehensive Guide. Oxford, UK: Pergamon/Elsevier, 1998
[35]
14 Lukas H L, Fries S G, Sundman B. Computational Thermodynamics: The CALPHAD Method. Cambridge, UK: Cambridge University Press, 2007
[36]
17 Oikawa K, Qin G W, Ikeshoji T, et al. Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co-Cr system. Acta Mater, 2002, 50: 2223-2232
[37]
18 Zhao J C. Reliability of the diffusion-multiple approach for phase diagram mapping. J Mater Sci, 2004, 12: 3913-3925
[38]
21 Zhang Q, Zhao J C. Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simula- tion method. Intermetallics, 2013, 34: 132
[39]
23 Terada Y, Ohkubo K, Mohri T, et al. Thermal conductivity in nickel solid solutions. J Appl Phys, 1997, 81: 2263-2268
[40]
24 Terada Y, Ohkubo K, Mohri T, et al. A comparative study of thermal conductivity in alloys and compounds. Mater Sci Eng A, 2000, 278: 292-294
[41]
25 Zhao J C. Combinatorial aproaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Prog Mater Sci, 2006, 51: 557-631
[42]
26 Cahill D G, Zheng X, Zhao J C. Spatially resolved measurements of thermal stresses by picosecond time-domain probe beam deflection. J Therm Stresses, 2010, 33: 9-14
[43]
33 Takeuchi I, Yang W, Chang K S, et al. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads. J Appl Phys, 2003, 94: 7336-7340
[44]
34 Fukumura T, Ohtani M, Kawasaki M, et al. Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl Phys Lett, 2000, 77: 3426-3428
[45]
35 Wei T, Xiang X D, Wallace-Freedman W G, et al. Scanning tip microwave near-field microscope. Appl Phys Lett, 1996, 68: 3506-3508
[46]
36 Gao C, Wei T, Duewer F, et al. High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope. Appl Phys Lett, 1997, 71: 1872-1874
[47]
37 Boggild P, Grey F, Hassenkam T, et al. Direct measurement of the microscale conjugated polymer monolayers. Adv Mater, 2000, 12: 947-949
[48]
38 Chung S Y, Chiang Y M. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem Solid State Lett, 2003, 6: A278-A281
[49]
41 DeHoff R T. Quantitative serial sectioning analysis: Preview. J Microsc, 1983, 131: 259-263
[50]
43 Echlin M P, Mottura A, Torbet C J, et al. A new TriBeam system for three-dimensional multimodal materials analysis. Rev Sci Instrum, 2012, 83: 023701
[51]
44 Dingley D J, Randle V. Microtexture determination by electron back-scatter diffraction. J Mater Sci, 1992, 27: 4545-4566
[52]
46 Miao J, Pollock T M, Jones J W. Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater, 2012, 60: 2840-2854
[53]
49 Jandeleit B, Schaefer D J, Powers T S, et al. Combinatorial materials science and catalysis. Angew Chem Int Ed, 1999, 38: 2494-2532
[54]
50 Fukumura T, Yamada Y, Toyosaki H, et al. Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl Surf Sci, 2004, 223: 62-67
[55]
51 Koinuma H, Takeuchi I. Combinatorial solid-state chemistry of inorganic materials. Nat Mater, 2004, 3: 429-438
[56]
53 Xiang X D. Combinatorial materials synthesis and screening: An integrated materials chip approach to discovery and optimization of functional materials. Annu Rev Mater Sci, 1999, 29: 149-171
[57]
54 Potyrailo R A, Mirsky V M. Combinatorial and high-throughput development of sensing materials: The first ten years. Chem Rev, 2008, 108: 770-813