3 Kovtyukhova N I, Kelley B K, Mallouk T E. Coaxially gated in-wire thin-film transistors made by template assembly. J Am Chem Soc, 2004, 126: 12738-12739
[2]
4 Robel I, Bunker B A, Kamat P V. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv Mater, 2005, 17: 2458-2463
[3]
7 Lin H, Liu H, Qian X, et al. Constructing a Blue light photodetector on inorganic/organic p-n heterojunction nanowire arrays. Inorg Chem, 2011, 50: 7749-7753
[4]
8 Liu X, Li Y. One-dimensional hybrid nanostructures with light-controlled properties. Dalton Tran, 2009, 33: 6447-6457
[5]
9 Guo Y, Zhang Y, Liu H, et al. Assembled organic/inorganic p-n Junction interface and photovoltaic cell on a single nanowire. J Phys Chem Lett, 2009, 1: 327-330
[6]
10 Guo Y, Liu H, Li Y, et al. Controlled core-shell structure for efficiently enhancing field-emission properties of organic-inorganic hybrid nanorods. J Phy Chem C, 2009, 113: 12669-12673
[7]
11 Zheng H, Li Y, Liu H, et al. Construction of heterostructure materials toward functionality. Chem Soc Rev, 2011, 40: 4506-4524
[8]
12 Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933-937
[9]
13 Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115: 8706-8715
[10]
14 Someya T, Werner R, Forchel A, et al. Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science, 1999, 285: 1905-1906
[11]
15 Gérard J M, Sermage B, Gayral B, et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phy Rev Lett, 1998, 81: 1110-1113
[12]
23 Qian F, Li Y, Grade?ak S, et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett, 2004, 4: 1975-1979
[13]
24 Clemens S, Schneller T, van der Hart A, et al. Registered deposition of nanoscale ferroelectric grains by template-controlled growth. Adv Mater, 2005, 17: 1357-1361
[14]
26 Xin H, Kim F S, Jenekhe S A. Highly efficient solar cells based on poly(3-butylthiophene) nanowires. J Am Chem Soc, 2008, 130: 5424-5425
[15]
28 Leschkies K S, Divakar R, Basu J, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett, 2007, 7: 1793-1798
[16]
29 Gong X, Yu T Z, Cao Y, et al. Larger open-circuit voltage polymer solar cells by poly(3-hexylthiophene) with multi-adducts fullerenes. Sci China Chem, 2012, 5: 743-748
[17]
30 Yang T B, Qin D H, Lan L F, et al. Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Sci China Chem, 2012, 5: 755-759
[18]
31 O'Brien G A, Quinn A J, Tanner D A, et al. Single polymer nanowire photodetector. Adv Mater, 2006, 18: 2379-2383
[19]
35 Zhang Y, Ichihashi T, Landree E, et al. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science, 1999, 285: 1719-1722
[20]
36 Xue F H, Fei G T, Wu B, et al. Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. J Am Chem Soc, 2005, 127: 15348-15349
[21]
37 Wang Q, Wang G, Xu B, et al. Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane. Mater Lett, 2005, 59: 1378-1382
[22]
41 Lahav M, Weiss E A, Xu Q, et al. Core-shell and segmented polymer-metal omposite nanostructures. Nano Lett, 2006, 6: 2166-2171
[23]
42 Cao H, Tie C, Xu Z, et al. Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Appl Phy Lett, 2001, 78: 1592-1594
[24]
43 Guo Y, Tang, Q, Liu H, et al. Light-controlled organic/inorganic p-n junction nanowires. J Am Chem Soc, 2008, 130: 9198-9199
[25]
44 Chen N, Qian X, Lin H, et al. Synthesis and characterization of axial heterojunction inorganic-organic semiconductor nanowire arrays. Dalton Trans, 2011, 40: 10804-10808
[26]
45 Chen N, Qian X, Lin H, et al. Growing uniform copolymer nanowire arrays for high stability and efficient field emission. J Mater Chem, 2012, 22: 11068-11072
[27]
46 Lei Y, Liao Q, Fu H, et al. Orange-blue-orange triblock one-dimensional heterostructures of organic microrods for white-light emission. J Am Chem Soc, 2010, 132: 1742-1743
[28]
47 Liu H, Zhao Q, Li Y, et al. Field emission properties of large-area nanowires of organic charge-transfer complexes. J Am Chem Soc, 2005, 127: 1120-1121
[29]
48 Ouyang C B, Liu H B, Qian X M, et al. Field emission and electrical bistable properties of CuTCPQ nanostructures. Dalton Trans, 2011, 40: 3553-3557
[30]
49 Cui S, Li Y, Guo Y, et al. Fabrication and field-emission properties of large-area nanostructures of the organic charge-transfer complex Cu-TCNAQ. Adv Mater, 2008, 20: 309-313
[31]
50 Liu H, Cui S, Guo Y, et al. Fabrication of large-area hybrid nanowires arrays as novel field emitters. J Mater Chem, 2009, 19: 1031-1036
[32]
51 Liu H, Liu Z, Qian X, et al. Field emission and electrical switching properties of large-area CuTCNQ nanotube arrays. Cryst Growth Design, 2009, 10: 237-243
[33]
52 Huang C, Li Y, Song Y, et al. Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties. Adv Mater, 2010, 22: 3532-3536
[34]
1 Liu K, Nagodawithana K, Searson P C, et al. Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires. Phy Rev B, 1995, 51: 7381-7384
[35]
2 Bognitzki M, Hou H, Ishaque M, et al. Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT Process). Adv Mater, 2000, 12: 637-640
[36]
5 Wang W, Song L P, Ryou J H, et al. Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0.5Ga0.5N substrates. J Am Chem Soc, 2005, 127: 7920-7923
[37]
6 Lin H, Liu H, Qian X, et al. Controlling the growth of low dimension nanostructures of an iridium complex. Dalton Trans, 2011, 40: 4397-4401
[38]
16 Tanaka K, Nakamura T, Takamatsu W, et al. Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities. Phy Rev Lett, 1995, 74: 3380-3383
[39]
17 Wang Z L. Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater, 2000, 12: 1295-1298
[40]
18 Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc Chem Res, 1999, 32: 435-445
[41]
19 Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66-69
[42]
20 Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291: 851-853
[43]
21 Shang-Guan Y G, Chen F, Zheng Q. Microstrucutre, morphology, crystallization and rheological behavior of impact polypropylene copolymer. Sci China Chem, 2012, 5:698-712
[44]
22 Huang Y, Duan X, Wei Q, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291: 630-633
[45]
25 Huang Y, Duan X, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1: 142-147
[46]
27 Cheung K Y, Yip C T, Djuri?i? A B, et al. Long K-doped titania and titanate nanowires on Ti foil and FTO/quartz substrates for solar-cell applications. Adv Funct Mater, 2007, 17: 555-562
[47]
32 Wang K, Chen J, Zhou W, et al. Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv Mater, 2008, 20: 3248-3253
[48]
33 Tok Jeffrey B H, Bao Z N. Recent advance I flexible and stretchable electronics, sensors and power sources. Sci China Chem, 2012, 5: 718-725
[49]
34 Lauhon L J, Gudiksen M S, Wang D, et al. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420: 57-61
[50]
38 Ostermann R, Li D, Yin Y, et al. V2O5 Nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett, 2006, 6: 1297-1302
[51]
39 Mieszawska A J, Jalilian R, Sumanasekera G U, et al. The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small, 2007, 3: 722-756
[52]
40 Park S, Lim J H, Chung S W, et al. Self-assembly of mesoscopic metal-polymer amphiphiles. Science, 2004, 303: 348-351
[53]
53 Kempa T J, Tian B, Kim D R, et al. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett, 2008, 8: 3456-3460