全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

自组装低维无机/有机异质结纳米材料

DOI: 10.1360/csb2014-59-1-1, PP. 1-14

Keywords: 一维纳米材料,异质结,AAO模板

Full-Text   Cite this paper   Add to My Lib

Abstract:

一维有机-无机异质结纳米材料因自身具有突出的光学和电学的性能而备受关注.在这种异质结材料内部,有机和无机的组分相互作用形成多个功能界面.这种新材料不仅保留了原来单组分的本征特性,还会通过界面强的作用产生新的特性,真正实现“1+1>2”的协同性能.认识和解释分子自组装的控调规律;通过分子结构的裁剪和作用力的调控实现小尺度低维分子聚集态异质结构的大面积、高有序组装;理解分子聚集态尺度下分子间弱相互作用产生的协同驱动机制和通过杂化/异质自组装优化原有功能,获得新结构的分子低维聚集态结构并在分子自组装体水平上研究结构变化导向的特殊性质,对基础科学研究的发展具有重大的科学意义.在本文中,我们主要讨论了制备异质结纳米材料的方法以及这些材料在电子和光学领域的应用.

References

[1]  3 Kovtyukhova N I, Kelley B K, Mallouk T E. Coaxially gated in-wire thin-film transistors made by template assembly. J Am Chem Soc, 2004, 126: 12738-12739
[2]  4 Robel I, Bunker B A, Kamat P V. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv Mater, 2005, 17: 2458-2463
[3]  7 Lin H, Liu H, Qian X, et al. Constructing a Blue light photodetector on inorganic/organic p-n heterojunction nanowire arrays. Inorg Chem, 2011, 50: 7749-7753
[4]  8 Liu X, Li Y. One-dimensional hybrid nanostructures with light-controlled properties. Dalton Tran, 2009, 33: 6447-6457
[5]  9 Guo Y, Zhang Y, Liu H, et al. Assembled organic/inorganic p-n Junction interface and photovoltaic cell on a single nanowire. J Phys Chem Lett, 2009, 1: 327-330
[6]  10 Guo Y, Liu H, Li Y, et al. Controlled core-shell structure for efficiently enhancing field-emission properties of organic-inorganic hybrid nanorods. J Phy Chem C, 2009, 113: 12669-12673
[7]  11 Zheng H, Li Y, Liu H, et al. Construction of heterostructure materials toward functionality. Chem Soc Rev, 2011, 40: 4506-4524
[8]  12 Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933-937
[9]  13 Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115: 8706-8715
[10]  14 Someya T, Werner R, Forchel A, et al. Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science, 1999, 285: 1905-1906
[11]  15 Gérard J M, Sermage B, Gayral B, et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phy Rev Lett, 1998, 81: 1110-1113
[12]  23 Qian F, Li Y, Grade?ak S, et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett, 2004, 4: 1975-1979
[13]  24 Clemens S, Schneller T, van der Hart A, et al. Registered deposition of nanoscale ferroelectric grains by template-controlled growth. Adv Mater, 2005, 17: 1357-1361
[14]  26 Xin H, Kim F S, Jenekhe S A. Highly efficient solar cells based on poly(3-butylthiophene) nanowires. J Am Chem Soc, 2008, 130: 5424-5425
[15]  28 Leschkies K S, Divakar R, Basu J, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett, 2007, 7: 1793-1798
[16]  29 Gong X, Yu T Z, Cao Y, et al. Larger open-circuit voltage polymer solar cells by poly(3-hexylthiophene) with multi-adducts fullerenes. Sci China Chem, 2012, 5: 743-748
[17]  30 Yang T B, Qin D H, Lan L F, et al. Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Sci China Chem, 2012, 5: 755-759
[18]  31 O'Brien G A, Quinn A J, Tanner D A, et al. Single polymer nanowire photodetector. Adv Mater, 2006, 18: 2379-2383
[19]  35 Zhang Y, Ichihashi T, Landree E, et al. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science, 1999, 285: 1719-1722
[20]  36 Xue F H, Fei G T, Wu B, et al. Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. J Am Chem Soc, 2005, 127: 15348-15349
[21]  37 Wang Q, Wang G, Xu B, et al. Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane. Mater Lett, 2005, 59: 1378-1382
[22]  41 Lahav M, Weiss E A, Xu Q, et al. Core-shell and segmented polymer-metal omposite nanostructures. Nano Lett, 2006, 6: 2166-2171
[23]  42 Cao H, Tie C, Xu Z, et al. Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Appl Phy Lett, 2001, 78: 1592-1594
[24]  43 Guo Y, Tang, Q, Liu H, et al. Light-controlled organic/inorganic p-n junction nanowires. J Am Chem Soc, 2008, 130: 9198-9199
[25]  44 Chen N, Qian X, Lin H, et al. Synthesis and characterization of axial heterojunction inorganic-organic semiconductor nanowire arrays. Dalton Trans, 2011, 40: 10804-10808
[26]  45 Chen N, Qian X, Lin H, et al. Growing uniform copolymer nanowire arrays for high stability and efficient field emission. J Mater Chem, 2012, 22: 11068-11072
[27]  46 Lei Y, Liao Q, Fu H, et al. Orange-blue-orange triblock one-dimensional heterostructures of organic microrods for white-light emission. J Am Chem Soc, 2010, 132: 1742-1743
[28]  47 Liu H, Zhao Q, Li Y, et al. Field emission properties of large-area nanowires of organic charge-transfer complexes. J Am Chem Soc, 2005, 127: 1120-1121
[29]  48 Ouyang C B, Liu H B, Qian X M, et al. Field emission and electrical bistable properties of CuTCPQ nanostructures. Dalton Trans, 2011, 40: 3553-3557
[30]  49 Cui S, Li Y, Guo Y, et al. Fabrication and field-emission properties of large-area nanostructures of the organic charge-transfer complex Cu-TCNAQ. Adv Mater, 2008, 20: 309-313
[31]  50 Liu H, Cui S, Guo Y, et al. Fabrication of large-area hybrid nanowires arrays as novel field emitters. J Mater Chem, 2009, 19: 1031-1036
[32]  51 Liu H, Liu Z, Qian X, et al. Field emission and electrical switching properties of large-area CuTCNQ nanotube arrays. Cryst Growth Design, 2009, 10: 237-243
[33]  52 Huang C, Li Y, Song Y, et al. Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties. Adv Mater, 2010, 22: 3532-3536
[34]  1 Liu K, Nagodawithana K, Searson P C, et al. Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires. Phy Rev B, 1995, 51: 7381-7384
[35]  2 Bognitzki M, Hou H, Ishaque M, et al. Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT Process). Adv Mater, 2000, 12: 637-640
[36]  5 Wang W, Song L P, Ryou J H, et al. Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0.5Ga0.5N substrates. J Am Chem Soc, 2005, 127: 7920-7923
[37]  6 Lin H, Liu H, Qian X, et al. Controlling the growth of low dimension nanostructures of an iridium complex. Dalton Trans, 2011, 40: 4397-4401
[38]  16 Tanaka K, Nakamura T, Takamatsu W, et al. Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities. Phy Rev Lett, 1995, 74: 3380-3383
[39]  17 Wang Z L. Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater, 2000, 12: 1295-1298
[40]  18 Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc Chem Res, 1999, 32: 435-445
[41]  19 Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66-69
[42]  20 Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291: 851-853
[43]  21 Shang-Guan Y G, Chen F, Zheng Q. Microstrucutre, morphology, crystallization and rheological behavior of impact polypropylene copolymer. Sci China Chem, 2012, 5:698-712
[44]  22 Huang Y, Duan X, Wei Q, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291: 630-633
[45]  25 Huang Y, Duan X, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1: 142-147
[46]  27 Cheung K Y, Yip C T, Djuri?i? A B, et al. Long K-doped titania and titanate nanowires on Ti foil and FTO/quartz substrates for solar-cell applications. Adv Funct Mater, 2007, 17: 555-562
[47]  32 Wang K, Chen J, Zhou W, et al. Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv Mater, 2008, 20: 3248-3253
[48]  33 Tok Jeffrey B H, Bao Z N. Recent advance I flexible and stretchable electronics, sensors and power sources. Sci China Chem, 2012, 5: 718-725
[49]  34 Lauhon L J, Gudiksen M S, Wang D, et al. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420: 57-61
[50]  38 Ostermann R, Li D, Yin Y, et al. V2O5 Nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett, 2006, 6: 1297-1302
[51]  39 Mieszawska A J, Jalilian R, Sumanasekera G U, et al. The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small, 2007, 3: 722-756
[52]  40 Park S, Lim J H, Chung S W, et al. Self-assembly of mesoscopic metal-polymer amphiphiles. Science, 2004, 303: 348-351
[53]  53 Kempa T J, Tian B, Kim D R, et al. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett, 2008, 8: 3456-3460

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133