全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

天然磁靶向纳米药物载体磁小体研究进展

DOI: 10.1360/972013-1134, PP. 945-952

Keywords: 磁小体,磁性纳米颗粒,靶向治疗天然药物载体

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁小体是一类存在于趋磁细菌体内,表面由脂质双分子层包裹,对磁场具有敏感性的纳米级单磁畴晶体.凭借其良好的生物相容性及表面可修饰等显著优势,可作为一种新型的天然磁性纳米载体应用于多种生物活性物质的固定负载,在靶向治疗方面有着广阔的应用前景.本文主要介绍了天然磁小体的来源及较人造磁性纳米颗粒的结构优势,概括了磁小体用作药物靶向载体的最新研究进展,并在此基础上探讨了磁小体载药研究中存在的问题及其发展前景.

References

[1]  1 Widder K J, Senyei A E, Ranney D F. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres. Cancer Res, 1980, 40: 3512-3517
[2]  2 Salgueirino-Maceira V, Correa-Duarte M A. Increasing the complexity of magnetic core/shell structured nanoparticles for biological applications. Adv Mater, 2007, 19: 4131-4144
[3]  3 Shen Z Y, Wei W, Tanaka H, et al. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol Res, 2011, 64: 410-419
[4]  4 Liu X, Suo R, Xiong S L, et al. HDL drug carriers for targeted therapy. Clin Chim Acta, 2013, 415: 94-100
[5]  5 Zhang L, Yao J, Zhou J P, et al. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int J Pharm, 2013, 441: 654-664
[6]  6 Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun, 2003, 927-934
[7]  7 Park J, Joo J, Hyeon T, et al. Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed, 2007, 46: 4630-4660
[8]  8 Wang X, Li Y. Monodisperse nanocrystals: General synthesis, assembly, and their applications. Chem Commun, 2007, 28: 2901-2910
[9]  9 Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev, 2004, 104: 3893-3946
[10]  10 Akhtar J, Chaturvedi R, Sharma J, et al. Magnetized carrier as novel drug delivery system. Int J Drug Deliv Technol, 2009, 1: 28-35
[11]  11 Paterson G A, Wang Y Z, Pan Y X. The fidelity of paleomagnetic records carried by magnetosome chains. Earth Planet Sci Lett, 2013, 383: 82-91
[12]  12 Abhilash, Revati K, Pandey B D. Microbial synthesis of iron-based nanomaterials—A review. Bull Mater Sci, 2011, 34: 191-198
[13]  15 Naresh M, Das S, Mishra P, et al. The chemical formula of a magnetotactic bacterium. Biotechnol Bioeng, 2012, 109: 1205-1216
[14]  16 Zhang Y, Zhang X J, Jiang W, et al. Semicontinuous culture of magnetospirillum grphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl Environ Microbiol, 2011, 77: 5851-5856
[15]  17 Guo F F, Liu Y, Chen Y P, et al. A novel rapid and continuous procedure for large-scale purification of magnetosomes from magnetospirillum gryphiswaldense. Appl Microbiol Biotechnol, 2011, 90: 1277-1283
[16]  26 Sun J B, Duan J H, Dai S L, et al. Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: Magnetic nanoparticles as drug carriers isolated from magnetospirillum gryphiswaldense. Biotechnol Bioeng, 2008, 101: 1313-1320
[17]  27 Nakamura N, Burgess J G, Yagiuda K, et al. Detection and removal of escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem, 1993, 65: 2036-2039
[18]  29 Nakayama H, Arakaki A, Maruyama K, et al. Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng, 2003, 84: 96-102
[19]  30 Ota H, Arakaki A, Tanaka T, et al. Single nucleotide mismatch analysis using oligonucleotide probes synthesized on bacterial magnetic particle. Biomol Eng, 2003, 20: 305-309
[20]  31 Guo L, Huang J, Zheng L M. Efficient conjugation doxorubicin to bacterial magnetic nanoparticles via a triplex hands coupling reagent. J Nanosci Nanotechnol, 2010, 10: 6514-6519
[21]  32 Liu Y G, Xie M B, Wang S B, et al. Facile fabrication of high performances MTX nanocomposites with natural biomembrane bacterial nanoparticles using GP. Mater Lett, 2013, 100: 248-251
[22]  35 Guo L, Huang J, Zheng L M, et al. Control generating of bacterial magnetic nanoparticle-doxorubicin conjugates by poly-L-glutamic acid surface modification. Nanotechnology, 2011, 22: 175102
[23]  38 Kanetsuki Y, Tanaka T, Matsunaga T, et al. Enhanced heterologous protein display on bacterial magnetic particles using a lon protease gene deletion mutant in magnetospirillum magneticum AMB-1. J Biosci Bioeng, 2013, 116: 65-70
[24]  39 Scheffel A, Gruska M, Faivre D, et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature, 2006, 440: 110-114
[25]  40 Li X, Wang B, Jin H L, et al. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med, 2007, 9: 679-690
[26]  48 Sun J B, Tang T, Duan J H, et al. Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology, 2010, 4: 271-283
[27]  49 Sun J B, Wang Z L, Duan J H, et al. Targeted distribution of bacterial magnetosomes isolated from magnetospirillum gryphiswaldense MSR-1 in healthy sprague-dawley rats. J Nanosci Nanotechnol, 2009, 9: 1881-1885
[28]  50 Meng C, Tian J S, Li Y, et al. Influence of native bacterial magnetic particles on mouse immune response. Acta Microbiol Sin, 2010, 50: 817-821
[29]  52 Shin J, Yoo C H, Lee J, et al. Cell response induced by internalized bacterial magnetic nanoparticles under an external static magnetic field. Biomaterials, 2012, 33: 5650-5657
[30]  13 Blakemore R P, Maratea D, Wolfe R S. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol, 1979, 140: 720-729
[31]  14 Popa R, Fang W, Nealson K H, et al. Effect of oxidative stress on the growth of magnetic particles in magnetospirillum magneticum. Int Microbiol, 2009, 12: 49-57
[32]  18 马四红. 趋磁细菌的生物矿化及磁小体的分离萃取. 硕士学位论文. 上海: 华东理工大学, 2013. 19-40
[33]  19 Kobayashi A, Kirschvink J L, Nash C Z, et al. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic, and evolutionary implications. Earth Planet Sci Lett, 2006, 245: 538-550
[34]  20 张吉林, 洪广言, 倪嘉缵. 单分散磁性纳米粒子靶向药物载体. 化学进展, 2009, 21: 880-889
[35]  21 Schüler D. Formation of magnetosomes in magnetotactic bacteria. J Mol Microbiol Biotechnol, 1999, 1: 79-86
[36]  22 Jeong U, Teng X, Wang Y, et al. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv Mater, 2007, 19: 33-60
[37]  23 Sun J B, Li Y, Liang X J, et al. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multifunctions. J Nanomater, 2011, 2011: 469031-469043
[38]  24 Yan L, Zhang S, Chen P, et al. Magnetotactic bacteria, magnetosomes and their application. Microbiol Res, 2012, 167: 507-519
[39]  25 Guo L, Huang J, Zhang X, et al. Bacterial magnetic nanoparticles as drug carriers. J Mater Chem, 2008, 18: 5993-5997
[40]  28 Tsuyoshi T, Hajime T, Fumiko U, et al. Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. J Biotechnol, 2004, 108: 153-159
[41]  33 Deng Q J, Liu Y G, Wang S B, et al. Construction of a novel magnetic targeting anti-tumor drug delivery system: Cytosine arabinoside-loaded bacterial magnetosome. Materials, 2013, 6: 3755-3763
[42]  34 Nakamura N, Burgess J G, Yagiuda K, et al. Detection and removal of escherichia coli using fluorescein isothiocyanate conjugated monoclonal anti-body immobilized on bacterial magnetic particles. Anal Chem, 1993, 65: 2036-2039
[43]  36 Yoshino T, Matsunaga T. Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Appl Environ Microbiol, 2006, 72: 465-471
[44]  37 Kanetsuki Y, Tanaka M, Tanaka T, et al. Effective expression of human proteins on bacterial magnetic particles in an anchor gene deletion mutant of magnetospirillum magneticum AMB-1. Biochem Biophys Res Commun, 2012, 426: 7-11
[45]  41 Tang Y S, Wang D, Zhou C, et al. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Therapy, 2011, 19: 1187-1195
[46]  42 Matsunaga T, Kamiya S. Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol, 1987, 26: 328-332
[47]  43 Pollithy A, Romer T, Lang C, et al. Magnetosome expression of functional camelid antibody fragments (nanobodies) in magnetospirillum gryphiswaldense. Appl Environ Microbiol, 2011, 77: 6165-6171
[48]  44 Grouzdev D S, Dziuba M V, Gerasimov A S, et al. Production of modified magnetosome membrane proteins and analysis of their activity. Appl Biochem Microbiol, 2013, 49: 220-226
[49]  45 林晓芬, 陈爱政, 王士斌. 磁性氧化铁纳米颗粒的生物相容性研究进展. 科学通报, 2011, 56: 2223-2228
[50]  46 Brunner T J, Wick P, Manser P, et al. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol, 2006, 40: 4374-4381
[51]  47 Li X, Ji W, Sun J B, et al. Purified and sterilized magnetosomes from magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol, 2007, 45: 75-81
[52]  51 Sun J B, Duan J H, Dai S L, et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett, 2007, 258: 109-117
[53]  53 Lee J H, Kin J W, Cheon J. Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells, 2013, 35: 274-284
[54]  54 Prozorow T, Bazylinsk D A, Mallapragada S K, et al. Novel magnetic nanomaterials inspired by magnetotactic bacteria: Topical review. Mater Sci Eng R, 2013, 74: 133-172
[55]  55 Sun X L, Wu L Y, Ji J, et al. Longitudinal surface plasmon resonance assay enhanced by magnetosomes for simultaneous detection of pefloxacin and microcystin-LR in seafoods. Biosens Bioelectron, 2013, 47: 318-323

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133