全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

碳氮添加对不同湿润程度的温带森林土壤氧化亚氮排放影响

DOI: 10.1360/972013-719, PP. 1337-1347

Keywords: 森林土壤,氧化亚氮,干湿交替,葡萄糖,硝态氮,铵态氮,溶解性有机氮,微生物量

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用室内土柱培养的方法,研究不同湿润程度(55%和80%WFPS)条件下外源碳(葡萄糖,6.4gCm-2)和两种形态氮(NH4Cl和KNO3,4.5gNm-2)的添加对温带成熟阔叶红松混交林和次生白桦林土壤氧化亚氮(N2O)排放量的影响.研究结果表明除了高湿润程度单施NH4Cl的白桦林土壤外,湿润程度增加以及外源碳和氮添加均能显著促进两种林分土壤N2O排放量,并存在两两交互作用.葡萄糖添加使阔叶红松混交林和白桦林土壤在整个培养期内N2O累积排放量分别增加0.53~2.67和4.70~29.32mgN2O-Nm-2,尤其是高湿润程度和白桦林土壤更为明显;同时伴有葡萄糖添加后两种林分土壤矿质氮含量显著减少,特别是高湿润条件下白桦林土壤水浸提NO3-含量降低幅度更大.这说明了白桦林土壤N2O释放量对外源碳添加的激发效应更敏感,并随土壤湿度增加而加剧.低湿润条件下,培养初期外源氮添加显著抑制葡萄糖对土壤N2O排放量的促进作用,之后随着氮形态和林分类型而发生变化;高湿润条件下,外源氮添加显著增强葡萄糖对土壤N2O排放量的促进作用,且硝态氮强于铵态氮(PP2SO4浸提的溶解性有机氮(DON)含量,尤其是阔叶红松混交林土壤(P2O累积排放量受到WFPS、水浸提NH4+-N和水浸提DON含量及微生物碳/氮比的影响,共同解释其61%的变化,其中水浸提DON含量贡献率最大;阔叶红松混交林土壤N2O累积排放量受到WFPS、水浸提NH4+-N和微生物碳含量的影响,共同解释其50%的变化,其中水浸提NH4+-N含量贡献率最大.上述结果显示,加湿对森林土壤N2O排放量的增加与土壤活性氮含量、湿润程度和微生物量有关.

References

[1]  1 Firestone M K, Davidson E A. Microbiological basis of NO and N2O production and consumption in soil. In: Andreae M O, Schimel D S, eds. Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. Chichester: John Wiley, 1989. 7-21
[2]  3 Gillam K M, Zebarth B J, Burton D L. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Can J Soil Sci, 2008, 88: 133-143
[3]  10 Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil. In: Wilson J R, ed. Advances in Nitrogen Cycling in Agricultural Ecosystems. Wallingford: CAB International, 1988. 368-386
[4]  19 Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organiCmatter from upland UK moorland soils, investigated by a field manipulation experiment. Environ Int, 1999, 25: 83-95
[5]  27 Dilly O. Effects of glucose, cellulose, and humic acids on soil microbial eco-physiology. J Plant Nutr Soil Sci, 2004, 167: 261-266
[6]  28 Guo R H, Zheng J Q, Han S J, et al. Carbon and nitrogen turnover in response to warming and nitrogen addition during early stages of forest litter decomposition—An incubation experiment. J Soils Sediments, 2013, 13: 312-324
[7]  30 Currie W S, Aber J D, McDowell W H, et al. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry, 1996, 35: 471-505
[8]  31 Chantigny M H. Dissolved and water-extractable organiCmatter in soils: A review on the influence of land use and management practices. Geoderma, 2003, 113: 357-380
[9]  32 Erickson H, Keller M, Davidson E A. Nitrogen oxide fluxes and nitrogen cycling during postagricultural succession and forest fertilization in the humid tropics. Ecosystems, 2001, 4: 67-84
[10]  33 张腾宇, 徐星凯, 罗献宝, 等. 低浓度乙炔对森林土壤硝化和矿化作用及微生物氮的影响. 科学通报, 2009, 54: 792-797
[11]  34 Hogberg M N, Hogberg P, Myrold D D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 2007, 150: 590-601
[12]  35 Laughlin R J, Rutting T, Mueller C. Effect of acetate on soil respiration, N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil. Appl Soil Ecol, 2009, 42: 25-30
[13]  2 Andersen A J, Petersen S O. Effects of C and N availability and soil-water potential interactions on N2O evolution and PLFA composition. Soil Biol Biochem, 2009, 41: 1726-1734
[14]  4 Ding W X, Yagi K, Cai Z C, et al. Impact of long-term application of fertilizers on N2O and NO production potential in an intensively cultivated sandy loam soil. Water Air Soil Pollut, 2010, 212: 141-153
[15]  5 Weitz A M, Linder E, Frolking E, et al. N2O emissions from humid tropical agricultural soils: Effects of soil moisture, texture and nitrogen availability. Soil Biol Biochem, 2001, 33: 1077-1093
[16]  6 Abbasi M K, Adams W A. Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions. Soil Biol Biochem, 2000, 32: 1251-1259
[17]  7 Menéndez S, Barrena I, Setien I, et al. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol Biochem, 2012, 53: 82-89
[18]  8 Xu X K, Han L, Wang Y S, et al. Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils. Soil Sci Plant Nutr, 2007, 53: 430-440
[19]  9 王旭, 周广胜, 蒋延玲, 等. 山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较. 植物生态学报, 2007, 31: 348-354
[20]  11 Wu J S, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction——An automated procedure. Soil Biol Biochem, 1990, 22: 1167-1169
[21]  12 Franzluebbers A J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl Soil Ecol, 1999, 11: 91-101
[22]  13 Kim D G, Vargas R, Bond-Lamberty B, et al. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences, 2012, 9: 2459-2483
[23]  14 Schaufler G, Kiteler B, Schindlbacher A, et al. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur J Soil Sci, 2010, 61: 683-696
[24]  15 Dobbie K E, Smith K A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur J Soil Sci, 2001, 52: 667-673
[25]  16 Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res, 2004, 109, doi: 10.1029/2004JD004590
[26]  17 Anja B, Laura C, Roland B, et al. Effect of antecedent soil moisture conditions on emissions and isotopologue distribution of N2O during denitrification. Soil Biol Biochem, 2011, 43: 240-250
[27]  18 Cui F, Yan G X, Zhou Z X, et al. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain. Soil Biol Biochem, 2012, 48: 10-19
[28]  20 Preston M D, Eimers M C, Watmough S A. Effect of moisture and temperature variation on DOC release from a peatland: Conflicting results from laboratory, field and historical data analysis. Sci Total Environ, 2010, 7: 1235-1242
[29]  21 Lundquist E J, Jackson L E, Scow K M. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol Biochem, 1999, 31: 1031-1038
[30]  22 Gordon H, Haygarth P M, Bardgett R D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol Biochem, 2008, 40: 302-311
[31]  23 Schmitt A, Glaser B, Borken W, et al. OrganiCmatter quality of a forest soil subjected to repeated drying and different re-wetting intensities. Eur J Soil Sci, 2010, 61: 243-254
[32]  24 Zhang B, Yao S H, Hu F. Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition. Eur J Soil Sci, 2007, 58: 1482-1492
[33]  25 Xu X K, Luo X B. Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma, 2012, 170: 118-126
[34]  26 Khan K S, Joergensen R G. Effects of Zn and P addition on the microbial biomass in a Zn deficient calcareous soil amended with glucose. Plant Soil, 2010, 335: 493-499
[35]  29 闫聪微, 马红亮, 高人, 等. 模拟氮沉降对中亚热带森林土壤中可溶性氮含量的影响. 环境科学研究, 2012, 25: 678-684

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133