全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

黄河源区多年冻土活动层和季节冻土冻融过程时空特征

DOI: 10.1360/csb2014-59-14-1327, PP. 1327-1336

Keywords: 多年冻土,活动层,冻结融化过程,整体冻结期,零点幕

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于黄河源区2010~2012年4个监测场地的土壤温度和水分资料,分析了多年冻土活动层和季节冻土冻融过程时空差异.结果表明,4个场地地温和冻土厚度不同,活动层底板或最大季节冻结深度年平均温度(TTOP)分别为查拉坪场地(CLP)-1.9℃,扎陵湖场地(ZLH)-0.9℃,麻多乡场地(MDX)-0.4℃,鄂陵湖场地(ELH)1.1℃.冻融过程差异与冻土温度和TTOP相关,随着TTOP升高,融化开始时间提前,CLP在6月初,ZLH在5月中下旬,MDX在5月初,ELH在4月上旬;冻结开始时间滞后,CLP为10月初,ZLH为10月上中旬,MDX为10月中旬,ELH为10月中下旬;活动层整体冻结期随之减小,CLP为202d,ZLH为130d,MDX为100d,ELH整体融化期为89d.CLP和ZLH冻结融化过程均于年内完成,冻结过程表现为由上向下和由下向上双向进行.MDX冻结过程持续至次年1月末,但在冻结期末冻结速率很小,由下向上冻结因极微弱而呈单向进行.ELH冻结持续至次年5月初,出现季节冻结和季节融化过程并存格局;冻结过程单向进行,但融化呈现微弱的双向过程;6月下旬至7月初双向融化比较稳定.各场地随着TTOP升高,由下向上冻结速率相对由上向下的减慢,由下向上的冻结深度减小,融化过程相对冻结过程持续时间比值减小.总之,黄河源区活动层季节冻融过程与青藏高原其他地区有比较显著的差异.

References

[1]  1 周幼吾, 邱国庆, 郭东信, 等. 中国冻土. 北京: 科学出版社, 2000
[2]  2 van Everdingen R O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. Calgary: The Arctic Institute of North American, the University of Calgary, 2005
[3]  4 Anisimov O A, Shiklomanov N I, Nelson F E. Global warming and active-layer thickness: Results from transient general circulation models. Glob Planet Change, 1997, 15: 61-77
[4]  5 Vincent W F, Whyte L G, Connie L, et al. ArctiCmicrobial ecosystems and impacts of extreme warming during the International Polar Year. Polar Sci, 2009, 3: 171-180
[5]  6 吴青柏, 牛富俊. 青藏高原多年冻土变化与工程稳定性. 科学通报, 2013, 58: 115-130
[6]  9 李森, 高尚玉, 杨萍, 等. 青藏高原冻融荒漠化的若干问题——以藏西-藏北荒漠化区为例. 冰川冻土, 2005, 27: 476-485
[7]  17 Romanovsky V E, Osterkamp T. Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost Periglacial Process, 1997, 8: 1-22
[8]  18 赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程. 科学通报, 2000, 45: 1205-1211
[9]  19 Osterkamp T, Romanovsky V E. Freezing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost Periglacial Process, 1997, 8: 23-44
[10]  20 王家澄, 郭东信, 黄以职, 等. 大兴安岭北部霍拉河盆地季节融化层的研究. 冰川冻土, 1989, 11: 203-214
[11]  21 Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res, 2010, 115: D09107, doi: 10.1029/2009JD012974
[12]  24 李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征. 科学通报, 2012, 57: 2864-2871
[13]  25 Jin H J, He R X, Cheng G D, et al. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett, 2009, 4: 1-11
[14]  26 罗栋梁, 金会军, 林琳, 等. 黄河源区多年冻土温度及厚度研究新进展. 地理科学, 2012, 32: 898-904
[15]  27 梁四海, 徐德伟, 万力, 等. 黄河源区基流量的变化规律及影响因素. 地学前缘, 2008, 15: 280-289
[16]  30 Müller S W. Permafrost or Permanently Frozen Ground and Related Engineering Problems. Ann Arbor, Michigan: J W Edwards, 1947
[17]  31 程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示. 中国科学D辑: 地球科学, 2003, 33: 602-607
[18]  3 Hollesen J, Elberling B, Jansson P E. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Glob Change Biol, 2011, 17: 911-926
[19]  7 吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土, 2003, 25: 250-255
[20]  8 Guglielmin M, Evans C J E, Cannone N. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma, 2008, 144: 73-85
[21]  10 Guglielmin M, Worland M R, Cannone N. Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island. Geomorphology, 2012, 155-156: 20-33
[22]  11 胡宏昌, 王根绪, 王一博, 等. 江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应. 科学通报, 2009, 54: 242-250
[23]  12 Nowinski N S, Taneva L, Trumbore S E, et al. Decomposition of old organiCmatter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia, 2010, 163: 785-792
[24]  13 Minke M, Donner N, Karpov N, et al. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): A microtopographical characterisation of the active layer. Permafrost Periglacial Process, 2009, 20: 357-368
[25]  14 Wright N, Hayashi M, Quinton W L. Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res, 2009, 45: W05414
[26]  15 Ling F, Zhang T J. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafrost Periglacial Process, 2003, 14: 141-150
[27]  16 Wang G X, Liu L A, Liu G S, et al. Impacts of grassland vegetation cover on the active-layer thermal regime, northeast Qinghai-Tibet Plateau, China. Permafrost Periglacial Process, 2010, 21: 335-344
[28]  22 Romanovsky V E, Osterkamp T E. Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska. Permafrost Periglacial Process, 1995, 6: 313-335
[29]  23 Shiklomanov N I, Streletskiy D A, Nelson F E, et al. Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res, 2010, 115: G00I04, doi: 10.1029/2009JD001248
[30]  28 王一博, 王根绪, 张春敏, 等. 高寒植被生态系统变化对土壤物理化学性状的影响. 冰川冻土, 2007, 29: 921-927
[31]  29 Mutter Z, Phillips E M. Active layer characteristics at ten borehole sites in alpine permafrost terrain, Switzerland. Permafrost Periglacial Process, 2012, 23: 138-151
[32]  32 Kimble J. Cryosols: Permafrost-Affected Soils. Heidelberg: Springer, 2004
[33]  33 夏坤, 罗勇, 李伟平. 青藏高原东北部土壤冻融过程的数值模拟. 科学通报, 2011, 56: 1828-1838
[34]  34 Outcalt S I, Nelson F E, Hinkel K M. The zero-curtain effect: Heat and mass transfer across an isothermal region in freezing soil. Water Resour Res, 1990, 26: 1509-1516

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133