2 van Everdingen R O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. Calgary: The Arctic Institute of North American, the University of Calgary, 2005
[3]
4 Anisimov O A, Shiklomanov N I, Nelson F E. Global warming and active-layer thickness: Results from transient general circulation models. Glob Planet Change, 1997, 15: 61-77
[4]
5 Vincent W F, Whyte L G, Connie L, et al. ArctiCmicrobial ecosystems and impacts of extreme warming during the International Polar Year. Polar Sci, 2009, 3: 171-180
19 Osterkamp T, Romanovsky V E. Freezing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost Periglacial Process, 1997, 8: 23-44
21 Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res, 2010, 115: D09107, doi: 10.1029/2009JD012974
25 Jin H J, He R X, Cheng G D, et al. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett, 2009, 4: 1-11
3 Hollesen J, Elberling B, Jansson P E. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Glob Change Biol, 2011, 17: 911-926
8 Guglielmin M, Evans C J E, Cannone N. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma, 2008, 144: 73-85
[21]
10 Guglielmin M, Worland M R, Cannone N. Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island. Geomorphology, 2012, 155-156: 20-33
12 Nowinski N S, Taneva L, Trumbore S E, et al. Decomposition of old organiCmatter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia, 2010, 163: 785-792
[24]
13 Minke M, Donner N, Karpov N, et al. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): A microtopographical characterisation of the active layer. Permafrost Periglacial Process, 2009, 20: 357-368
[25]
14 Wright N, Hayashi M, Quinton W L. Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res, 2009, 45: W05414
[26]
15 Ling F, Zhang T J. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafrost Periglacial Process, 2003, 14: 141-150
[27]
16 Wang G X, Liu L A, Liu G S, et al. Impacts of grassland vegetation cover on the active-layer thermal regime, northeast Qinghai-Tibet Plateau, China. Permafrost Periglacial Process, 2010, 21: 335-344
[28]
22 Romanovsky V E, Osterkamp T E. Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska. Permafrost Periglacial Process, 1995, 6: 313-335
[29]
23 Shiklomanov N I, Streletskiy D A, Nelson F E, et al. Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res, 2010, 115: G00I04, doi: 10.1029/2009JD001248
29 Mutter Z, Phillips E M. Active layer characteristics at ten borehole sites in alpine permafrost terrain, Switzerland. Permafrost Periglacial Process, 2012, 23: 138-151
[32]
32 Kimble J. Cryosols: Permafrost-Affected Soils. Heidelberg: Springer, 2004
34 Outcalt S I, Nelson F E, Hinkel K M. The zero-curtain effect: Heat and mass transfer across an isothermal region in freezing soil. Water Resour Res, 1990, 26: 1509-1516