全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

光致变色金属(Ru,Pt,Ln)-二芳基乙烯分子开关

DOI: 10.1360/N972014-00435, PP. 2900-2917

Keywords: 分子开关,光致变色,金属-二芳基乙烯

Full-Text   Cite this paper   Add to My Lib

Abstract:

借助于金属本身具有丰富的光、电、磁性质,将金属砌块引入到光致变色体系中,是获得结构新颖、性能独特金属分子开关的一条有效途径.本文简要介绍了光致变色分子开关的相关特征、种类、变色机理及其潜在应用;系统介绍了二芳基乙烯分子开关的研究概况;重点介绍了光致变色金属(Ru,Pt,Ln)-二芳基乙烯分子开关方面的研究成果及其在相关领域的潜在应用.最后对该领域的研究热点和发展趋势作了展望.

References

[1]  1 刘德胜. 分子开关研究进展. 济宁学院学报, 2008, 29: 5-9
[2]  2 Irie M. Diarylethenes for memories and switches. Chem Rev, 2000, 100: 1685-1716
[3]  5 王建营, 冯长根. 光致变色现象及其在国防上的应用. 国防科技, 2005, 3: 22-25
[4]  6 Tian H, Yang S. Recent progresses on diarylethene based photochromic switches. Chem Soc Rev, 2004, 33: 85-97
[5]  8 Shoji H, Kobatake S. Thermal bleaching reactions of photochromic diarylethenes with thiophene-S,S-dioxide for a light-starting irreversible thermosensor. Chem Commun, 2013, 49: 2362-2364
[6]  12 Irie M, Kobatake S, Horichi M. Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science, 2001, 291: 1769-1772
[7]  13 Kobatake S, Takami S, Muto H, et al. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature, 2007, 446: 778-781
[8]  14 Zhang J, Zou Q, Tian H. Photochromic materials: More than meets the eye. Adv Mater, 2013, 25: 378-399
[9]  15 樊美公, 姚建年, 佟振合. 分子光化学与光功能材料科学. 北京: 科学出版社, 2009
[10]  27 Irie M, Sayo K. Solvent effects on the photochromic reactions of diarylethene derivatives. J Phys Chem, 1992, 96: 7671-7674
[11]  28 Uchida K, Matsuoka T, Sayo K, et al. Thermally reversible photochromic systems. Photochromism of a dipyrrolylperfluorocyclopentene. Chem Lett, 1999, 28: 835-836
[12]  29 Delbaere S, Berthet J, Shiozawa T, et al. Photochromic C2-symmetric chiral diarylethene: From the initial state to the final state. J Org Chem, 2012, 77: 1853-1859
[13]  30 Peng X, Deng J, Xu H. Substituent and solvent effects on the fluorescent and photochromic properties of 2-(2-pyridyl) imidazole containing diarylethene derivatives. RSC Adv, 2013, 3: 24146-24153
[14]  31 Ishibashi Y, Umesato T, Kobatake S, et al. Femtosecond laser photolysis studies on temperature dependence of cyclization and cycloreversion reactions of a photochromic diarylethene derivative. J Phys Chem C, 2012, 116: 4862-4869
[15]  33 Yildiz I, Deniz E, Raymo F M. Fluorescence modulation with photochromic switches in nanostructured constructs. Chem Soc Rev, 2009, 38: 1859-1867
[16]  34 Wu Y, Xie Y, Zhang Q, et al. Quantitative photoswitching in bis(dithiazole)ethane enables modulation of light for encoding optical signals. Angew Chem Int Ed, 2014, 53: 2090-2094
[17]  35 Matsuda K, Irie M. Diarylethene as a photoswitching unit. J Photochem Photobiol C Photochem Rev, 2004, 5: 169-182
[18]  36 Raymo F M, Tomasulo M. Electron and energy transfer modulation with photochromic switches. Chem Soc Rev, 2005, 34: 327-336
[19]  37 Yun C, You J, Kim J, et al. Photochromic fluorescence switching from diarylethenes and its applications. J Photochem Photobiol C: Photochem Rev, 2009, 10: 111-129
[20]  38 Fukaminato T. Single-molecule fluorescence photoswitching: design and synthesis of photoswitchable fluorescent molecules. J Photochem Photobiol C: Photochem Rev, 2011, 12: 177-208
[21]  41 Hirose T, Matsuda K. Photoswitching of chiral supramolecular environments and photoinduced lower critical solution temperature transitions in aqueous media following a supramolecular approach. Org Biomol Chem, 2013, 11: 873-880
[22]  42 Morimoto M, Miyasaka H, Yamashita M, et al. Coordination assemblies of [Mn single-molecule magnets linked by photochromic ligands: Photochemical control of the magnetic properties. J Am Chem Soc, 2009, 131: 9823-9835
[23]  43 Nakatsuji S. Recent progress toward the exploitation of organic radical compounds with photo-responsive magnetic properties. Chem Soc Rev, 2004, 33: 348-353
[24]  44 Aldoshin S M. Heading to photoswitchable magnets. J Photochem Photobiol A: Chem, 2008, 200: 19-33
[25]  45 Ratera I, Veciana J. Playing with organic radicals as building blocks for functional molecular materials. Chem Soc Rev, 2012, 41: 303-349
[26]  46 Wigglesworth T J, Myles A J, Branda N R. High-content photochromic polymers based on dithienylethenes. Eur J Org Chem, 2005, 2005: 1233-1238
[27]  47 Harvey C P, Tovar J D. Main-chain photochromic conducting polymers. Poly Chem, 2011, 2: 2699-2706
[28]  48 Luo Q, Cheng H, Tian H. Recent progress on photochromic diarylethene polymers. Poly Chem, 2011, 2: 2435-2443
[29]  50 Tian H, Tu H Y. Synthesis and photochromic properties of new bisthienylethene derivatives and a copolymer. Adv Mater, 2000, 12: 1597-1600
[30]  56 Fernández-Acebes A, Lehn J M. Optical switching and fluorescence modulation properties of photochromic metal complexes derived from dithienylethene ligands. Chem Eur J, 1999, 5: 3285-3292
[31]  59 Kuhni J, Adamo V, Belser P. Photochromic dithienylethene-phenanthroline ligands and their corresponding Ru(II) complexes. CHIMIA, 2006, 60: 207-211
[32]  60 Indelli M T, Carli S, Ghirotti M, et al. Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl) maleimide units. J Am Chem Soc, 2008, 130: 7286- 7299
[33]  61 Duan G, Yam V W W. Syntheses and photophysical properties of N-pyridylimidazol-2-ylidene tetracyanoruthenates(II) and photochromic studies of their dithienylethene-containing derivatives. Chem Eur J, 2010, 16: 12642-12649
[34]  62 Duan G, Wong W T, Yam V W W. Synthesis and photochromic studies of h6-mesitylene ruthenium(II) complexes bearing N-heterocyclic carbene ligands with the dithienylethene moiety. New J Chem, 2011, 35: 2267-2278
[35]  63 He B, Wenger O S. Ruthenium-phenothiazine electron transfer dyad with a photoswitchable dithienylethene bridge: Flash-quench sudies with methylviologen. Inorg Chem, 2012, 51: 4335-4342
[36]  64 Wen H M, Li B, Wang J Y, et al. Multistate photochromism in a ruthenium complex with dithienylethene-acetylide. Organometallics, 2013, 32: 1759-1765
[37]  65 Zhong Y W, Vila N, Henderson J C, et al. Dithienylcyclopentenes-containing transition metal bisterpyridine complexes directed toward molecular electronic applications. Inorg Chem, 2009, 48: 991-999
[38]  66 Ordronneau L, Nitadori H, Ledoux I, et al. Photochromic metal complexes: Photoregulation of both the nonlinear optical and luminescent properties. Inorg Chem, 2012, 51: 5627-5636
[39]  67 Li B, Wang J Y, Wen H M, et al. Redox-modulated stepwise photochromism in a ruthenium complex with dual dithienylethene-acetylides. J Am Chem Soc, 2012, 134: 16059-16067
[40]  68 Zhong Y W, Vilà N, Henderson J C, et al. Transition-metal tris-bipyridines containing three dithienylcyclopentenes: Synthesis, photochromic, and electrochromic properties. Inorg Chem, 2009, 48: 7080-7085
[41]  69 Norsten T B, Branda N R. Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv Mater, 2001, 13: 347-349
[42]  71 Jukes R T F, Adamo V, Hartl F, et al. Electronic energy transfer in a dinuclear Ru/Os complex containing a photoresponsive dithienylethene derivative as bridging ligand. Coord Chem Rev, 2005, 249: 1327-1335
[43]  72 Jukes R T F, Adamo V, Hartl F, et al. Photochromic dithienylethene derivatives containing Ru(II) or Os(II) metal units. Sensitized photocyclization from a triplet state. Inorg Chem, 2004, 43: 2779-2792
[44]  76 Lin Y, Yuan J, Hu M, et al. Syntheses and properties of binuclear ruthenium vinyl complexes with dithienylethene units as multifunction switches. Organometallics, 2009, 28: 6402-6409
[45]  77 Green K A, Cifuentes M P, Corkery T C, et al. Switching the cubic nonlinear optical properties of an electro-, halo-, and photochromic ruthenium alkynyl complex across six states. Angew Chem Int Ed, 2009, 48: 7867-7870
[46]  78 Tanaka Y, Ishisaka T, Inagaki A, et al. Photochromic organometallics with a dithienylethene (DTE) bridge, [Y-C≡C-DTE-C≡C-Y] (Y={MCp*(dppe)}): photoswitchable molecular wire (M=Fe) versus dual photo- and electrochromism (M=Ru). Chem Eur J, 2010, 16: 4762-4776
[47]  79 Meng F, Hervault Y M, Norel L, et al. Photo-modulable molecular transport junctions based on organometallic molecular wires. Chem Sci, 2012, 3: 3113-3118
[48]  80 Uchida K, Inagaki A, Akita M. Preparation and photochemical behavior of organoruthenium derivatives of photochromic dithienylethene (DTE): DTE-(RRuLm)n (RRuLm=(h6-C6H5)Ru(h5-C5Me5), (h6-C6H5)RuCl2(PPh3), (h5-C5Me4)Ru(CO)2; n=1, 2). Organometallics, 2007, 26: 5030-5041
[49]  82 Dai F R, Li B, Shi L X, et al. Photochromic and electrochromic properties of oxo-centred triruthenium compounds with a dithienylethene bis(phosphine) ligand. Dalton Trans, 2009, 10244-10249
[50]  83 Hervault Y M, Ndiaye C M, Norel L, et al. Controlling the stepwise closing of identical DTE photochromic units with electrochemical and optical stimuli. Org Lett, 2012, 14: 4454-4457
[51]  87 Brayshaw S K, Schiffers S, Stevenson A J, et al. Highly efficient visible-light driven photochromism: Developments towards a solid-state molecular switch operating through a triplet-sensitised pathway. Chem Eur J, 2011, 17: 4385-4395
[52]  88 Chan J C H, Lam W H, Wong H L, et al. Diarylethene-containing cyclometalated platinum(II) complexes: tunable photochromism via metal coordination and rational ligand design. J Am Chem Soc, 2011, 133: 12690-12705
[53]  89 Roberts M N, Carling C J, Nagle J K, et al. Successful bifunctional photoswitching and electronic communication of two platinum(II) acetylide bridged dithienylethenes. J Am Chem Soc, 2009, 131: 16644-16645
[54]  90 Wong H L, Tao C H, Zhu N, et al. Photochromic alkynes as versatile building blocks for metal alkynyl systems: Design, synthesis, and photochromic studies of diarylethene-containing platinum(II) phosphine alkynyl complexes. Inorg Chem, 2011, 50: 471-481
[55]  92 Luo Q, Chen B, Wang M, et al. Mono-bisthienylethene ring-fused versus multi-bisthienylethene ring-fused photochromic hybrids. Adv Funct Mater, 2003, 13: 233-239
[56]  93 Jung I, Choi H, Kim E, et al. Synthesis and photochromic reactivity of macromolecules incorporating four dithienylethene units. Tetrahedron, 2005, 61: 12256-12263
[57]  94 Chen S, Chen L J, Yang H B, et al. Light-triggered reversible supramolecular transformations of multi-bisthienylethene hexagons. J Am Chem Soc, 2012, 134: 13596-13599
[58]  95 Nakagawa T, Hasegawa Y, Kawai T. Nondestructive luminescence intensity readout of a photochromic lanthanide(III) complex. Chem Commun, 2009, 5630-5632
[59]  101 Cheng H B, Zhang H Y, Liu Y. Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene. J Am Chem Soc, 2013, 135: 10190-10193
[60]  102 Yam V W W, Ko C C, Zhu N. Photochromic and luminescence switching properties of a versatile diarylethene-containing 1,10-Phenan- throline ligand and its rhenium(I) complex. J Am Chem Soc, 2004, 126: 12734-12735
[61]  103 Ko C C, Kwok W M, Yam V W W, et al. Triplet MLCT photosensitization of the ring-closing reaction of diarylethenes by design and synthesis of a photochromic rhenium(I) complex of a diarylethene-containing 1,10-Phenanthroline ligand. Chem Eur J, 2006, 12: 5840-5848
[62]  104 Lee P H M, Ko C C, Zhu N, et al. Metal coordination-assisted near-infrared photochromic behavior: A large perturbation on absorption wavelength properties of N,N-donor ligands containing diarylethene derivatives by coordination to the rhenium(I) metal center. J Am Chem Soc, 2007, 129: 6058-6059
[63]  106 Luo Q, Cheng S, Tian H. Synthesis and photochromism of a new binuclear porphyrazinato magnesium(II). Tetrahedron Lett, 2004, 45: 7737-7740
[64]  107 Luo Q, Tian H, Chen B, et al. Effective non-destructive readout of photochromic bisthienylethene-phthalocyanine hybrid. Dyes Pigm, 2007, 73: 118-120
[65]  112 Uehara S, Hiromoto Y, Minkovska S, et al. Photochromic behavior of a bisthienylethene bearing Cu(I)-1,10- phenanthroline complexes. Dyes Pigm, 2012, 92: 861-867
[66]  113 Tanaka Y, Inagaki A, Akita M. A photoswitchable molecular wire with the dithienylethene (DTE) linker, (dppe)(h5-C5Me5)Fe-C≡C-DTE-C≡C-Fe(h5-C5Me5)(dppe). Chem Commun, 2007, 1169-1171
[67]  114 Zhang C, Chen Z, Jiang C, et al. Imidazole-based dithienylethenes: Synthesis, photochromism, and effects of metal ions. Mol Cryst Liq Cryst, 2013, 575: 1-7
[68]  115 Zhu W, Song L, Yang Y, et al. Novel bisthienylethene containing ferrocenyl-substituted naphthalimide: A photo- and redox multi- addressable molecular switch. Chem Eur J, 2012, 18: 13388-13394
[69]  116 Tan W, Zhou J, Li F, et al. Visible light-triggered photoswitchable diarylethene-based iridium(III) complexes for imaging living cells. Chem Asian J, 2011, 6: 1263-1268
[70]  117 Monaco S, Semeraro M, Tan W, et al. Multifunctional switching of a photo- and electro-chemiluminescent iridium-dithienylethene complex. Chem Commun, 2012, 48: 8652-8654
[71]  118 Gilat S L, Kawai S H, Lehn J M. Light-triggered electrical and optical switching devices. J Chem Soc, Chem Commun, 1993, 1439-1442
[72]  119 Liu H H, Chen Y. The Photochromism and fluorescence of diarylethenes with a imidazole bridge unit: A strategy for the design of turn-on fluorescent diarylethene system. J Phys Chem A, 2009, 113: 5550-5553
[73]  122 Li Z, Xia J, Liang J, et al. Synthesis of diarylethene derivatives containing various heterocycles and tuning of light-emitting properties in a turn-on fluorescent diarylethene system. Dyes Pigm, 2011, 90: 290-296
[74]  3 Vomasta D, H?gner C, Branda N R, et al. Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor. Angew Chem Int Ed, 2008, 47: 7644-7647
[75]  4 Yoon B, Lee J, Park I S, et al. Recent functional material based approaches to prevent and detect counterfeiting. J Mater Chem C, 2013, 1: 2388-2403
[76]  7 蒋莹莹. 光致变色化合物的制备及其在纺织品上的应用. 硕士学位论文. 青岛: 青岛大学, 2009
[77]  9 樊美公. 光子存储原理与光致变色材料. 化学进展, 1997, 9: 170-178
[78]  10 Tsujioka T, Shimizu Y, Irie M. Crosstalk in photon-mode photochromic multi-wavelength recording. Jpn J Appl Phys, 1994, 33: 1914- 1919
[79]  11 Irie M, Mohri M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem, 1988, 53: 803-808
[80]  16 罗千福, 范曲立, 黄维. 二芳基乙烯类光致变色材料的合成概述. 有机化学, 2007, 27: 175-187
[81]  17 Irie M, Uchida K. Synthesis and properties of photochromic diarylethenes with heterocyclic aryl groups. Bull Chem Soc Jpn, 1998, 71: 985-996
[82]  18 Frederick J H, Fujiwara Y, Penn J H, et al. Models for stilbene photoisomerization: Experimental and theoretical studies of the excited- state dynamics of 1,2-diphenylcycloalkenes. J Phys Chem, 1991, 95: 2845-2858
[83]  19 Hohlneicher G, Mueller M, Demmer M, et al. 1,2-Diphenylcycloalkenes: Electronic and geometric structures in the gas phase, solution, and solid state. J Am Chem Soc, 1988, 110: 4483-4494
[84]  20 Hanazawa M, Sumiya R, Horikawa Y, et al. Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocycloco alkene derivatives. J Chem Soc, Chem Commun, 1992, 206-207
[85]  21 Irie M, Miyatake O, Uchida K, et al. Photochromic diarylethenes with intralocking arms. J Am Chem Soc, 1994, 116: 9894-9900
[86]  22 Irie M, Sakemura K, Okinaka M, et al. Photochromism of dithienylethenes with electron-donating substituents. J Org Chem, 1995, 60: 8305-8309
[87]  23 Stellacci F, Bertarelli C, Toscano F, et al. A high quantum yield diarylethene-backbone photochromic polymer. Adv Mater, 1999, 11: 292-295
[88]  24 Uchida K, Tsuchida E, Aoi Y, et al. Substitution effect on the coloration quantum yield of a photochromic bisbenzothienylethene. Chem Lett, 1999, 27: 63-64
[89]  25 Takeshita M, Nagai M, Yamato T. A photochromic thiophenophan-1-ene. Chem Commun, 2003, 1496-1497
[90]  26 Takeshita M, Kato N, Kawauchi S, et al. Photochromism of dithienylethenes included in cyclodextrins. J Org Chem, 1998, 63: 9306-9313
[91]  32 Tamai N, Miyasaka H. Ultrafast dynamics of photochromic systems. Chem Rev, 2000, 100: 1875-1890
[92]  39 de Jong J J, Lucas L N, Kellogg R M, et al. Reversible optical transcription of supramolecular chirality into molecular chirality. Science, 2004, 304: 278-281
[93]  40 Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater, 2012, 24: 1926-1945
[94]  49 Kawai T, Nakashima Y, Irie M. A novel photoresponsive π-conjugated polymer based on diarylethene and its photoswitching effect in electrical conductivity. Adv Mater, 2005, 17: 309-314
[95]  51 Arai R, Uemura S, Irie M, et al. Reversible photoinduced change in molecular ordering of diarylethene derivatives at a solution-HOPG interface. J Am Chem Soc, 2008, 130: 9371-9379
[96]  52 Perrier A, Maurel F, Jacquemin D. Single molecule multiphotochromism with diarylethenes. Acc Chem Res, 2012, 45: 1173-1182
[97]  53 Yagai S, Kitamura A. Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev, 2008, 37: 1520-1529
[98]  54 Kim Y, Jung H Y, Choe Y H, et al. High-contrast reversible fluorescence photoswitching of dye-crosslinked dendritic nanoclusters in living vertebrates. Angew Chem Int Ed, 2012, 51: 2878-2882
[99]  55 Akita M. Photochromic organometallics, a stimuli-responsive system: An approach to smart chemical systems. Organometallics, 2011, 30: 43-51
[100]  57 Belser P, De Cola L, Hartl F, et al. Photochromic switches incorporated in bridging ligands: A new tool to modulate energy-transfer processes. Adv Funct Mater, 2006, 16: 195-208
[101]  58 Belser P, Kühni J, Adamo V. Synthesis of an unsymmetrically substituted, dithienylethene-containing 1,10-phenanthroline ligand and its ruthenium(II) complex. Synth, 2006, 2006: 1946-1948
[102]  70 Samachetty H D, Branda N R. Photomodulation of Lewis basicity in a pyridine-functionalized 1,2-dithienylcyclopentene. Chem Commun, 2005, 2840-2842
[103]  73 Zhong Y W, Vila N, Henderson J C, et al. Dinuclear transition-metal terpyridine complexes with a dithienylcyclo- pentene bridge directed toward molecular electronic applications. Inorg Chem, 2007, 46: 10470-10472
[104]  74 Wehmeier F, Mattay J. A perfluorocyclopentene based diarylethene bearing two terpyridine moieties-synthesis, photochemical properties and influence of transition metal ions. Beilstein J Org Chem, 2010, 6: 53
[105]  75 Liu Y, Lagrost C, Costuas K, et al. A multifunctional organometallic switch with carbon-rich ruthenium and diarylethene units. Chem Commun, 2008, 6117-6119
[106]  81 Motoyama K, Koike T, Akita M. Remarkable switching behavior of bimodally stimuli-responsive photochromic dithienylethenes with redox-active organometallic attachments. Chem Commun, 2008, 5812-5814
[107]  84 Lee J K W, Ko C C, Wong K M C, et al. A photochromic platinum(II) bis(alkynyl) complex containing a versatile 5,6-dithienyl-1,10- phenanthroline. Organometallics, 2006, 26: 12-15
[108]  85 Roberts M N, Nagle J K, Finden J G, et al. Linker-dependent metal-sensitized photoswitching of dithienylethenes. Inorg Chem, 2009, 48: 19-21
[109]  86 Roberts M N, Nagle J K, Majewski M B, et al. Charge transfer and intraligand excited state interactions in platinum-sensitized dithienylethenes. Inorg Chem, 2011, 50: 4956-4966
[110]  91 Li B, Wen H, Wang J, et al. Modulating stepwise photochromism in platinum(II) complexes with dual dithienylethene-acetylides by a progressive red shift of ring-closure absorption. Inorg Chem, 2013, 52: 12511-12520
[111]  96 Shiga T, Miyasaka H, Yamashita M, et al. Copper(II)-terbium(III) single-molecule magnets linked by photochromic ligands. Dalton Trans, 2011, 40: 2275-2282
[112]  97 Nakagawa T, Atsumi K, Nakashima T, et al. Reversible luminescence modulation in photochromic europium(III) complex having triangle terthiazole ligands. Chem Lett, 2007, 36: 372-373
[113]  98 Nakagawa T, Hasegawa Y, Kawai T. Photoresponsive europium(III) complex based on photochromic reaction. J Phys Chem A, 2008, 112: 5096-5103
[114]  99 Zhou Z, Hu H, Yang H, et al. Up-conversion luminescent switch based on photochromic diarylethene and rare-earth nanophosphors. Chem Commun, 2008, 4786-4788
[115]  100 Boyer J C, Carling C J, Gates B D, et al. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J Am Chem Soc, 2010, 132: 15766-15772
[116]  105 Chen B, Wang M, Wu Y, et al. Reversible near-infrared fluorescence switch by novel photochromic unsymmetrical-phthalocyanine hybrids based on bisthienylethene. Chem Commun, 2002, 1060-1061
[117]  108 Matsuda K, Takayama K, Irie M. Single-crystalline photochromism of a linear coordination polymer composed of 1,2-bis[2-methyl-5- (4-pyridyl)-3-thienyl] perfluorocyclopentene and bis(hexafluoroacetylacetonato) zinc(II). Chem Commun, 2001, 363-364
[118]  109 Matsuda K, Takayama K, Irie M. Photochromism of metal complexes composed of diarylethene ligands and Zn(II), Mn(II), and Cu(II) hexafluoroacetylacetonates. Inorg Chem, 2004, 43: 482-489
[119]  110 Han J, Maekawa M, Suenaga Y, et al. Photochromism of novel metal coordination polymers with 1,2-bis(2′-methyl-5′-(carboxylic acid)- 3′-thienyl) perfluorocyclo pentene in the crystalline phase. Inorg Chem, 2007, 46: 3313-3321
[120]  111 Aubert V, Guerchais V, Ishow E, et al. Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexes. Angew Chem Int Ed, 2008, 47: 577-580
[121]  120 Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313: 1642-1645
[122]  121 Hell S W. Microscopy and its focal switch. Nat Methods, 2009, 6: 24-32

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133