8 Ezer D, Cameron A G W. Solar evolution with varying G. Can J Phys, 1966, 44: 593-615
[9]
12 Luo J, Hu Z K, Fu X H, et al. Determination of Newtonian gravitational constant G with considering the non-linear effect. Phys Rev D, 1998, 59: 042001
[10]
13 Mohr P J, Taylor B N. CODATA recommended values of the fundamental physical constants: 1998. Rev Mod Phys, 2000, 72: 351-495
[11]
14 Mohr P J, Taylor B N. CODATA recommended values of the fundamental physical constants: 2002. Rev Mod Phys, 2005, 77: 1-107
[12]
15 Hu Z K, Guo J Q, Luo J. Correction of source mass effects in the HUST-99 measurement of G. Phys Rev D, 2005, 71: 127505
[13]
16 Mohr P J, Taylor B N, Newell D B. CODATA recommended values of the fundamental physical constants: 2006. Rev Mod Phys, 2008, 80: 633-730
[14]
17 Luo J, Liu Q, Tu L C, et al. Determination of the Newtonian gravitational constant G with time-of-swing method. Phys Rev Lett, 2009, 102: 240801
[15]
18 Tu L C, Li Q, Wang Q L, et al. New determination of the gravitational constant G with time-of-swing method. Phys Rev D, 2010, 82: 022001
[16]
19 Gundlach J H, Merkowitz S M. Measurement of Newton's constant using a torsion balance with angular acceleration feedback. Phys Rev Lett, 2000, 85: 2869-2872
[17]
20 Quinn T J, Speake C C, Richman S J, et al. A new determination of G using two methods. Phys Rev Lett, 2001, 87: 111101
[18]
21 Armstrong T R, Fitzgerald M P. New measurements of G using the measurement standards laboratory torsion balance. Phys Rev Lett, 2003, 91: 201101
[19]
22 Schlamminger S, Holzschuh E, Kündig W, et al. Measurement of Newton's gravitational constant. Phys Rev D, 2006, 74: 082001
[20]
24 Quinn T, Parks H, Speake C, et al. Improved determination of G using two methods. Phys Rev Lett, 2013, 111: 101102
[21]
25 Floratos E G, Leontaris G K. Low scale unification, Newton's law and extra dimensions. Phys Lett B, 1999, 465: 95-100
[22]
26 Kehagias A, Sfetsos K. Deviations from the 1/r2 Newton law due to extra dimensions. Phys Lett B, 2000, 472: 39-44
[23]
27 Lamoreaux S K. Demostration of the Carsimir force in the 0.6 to 6 μm range. Phys Rev Lett, 1997, 78: 5-8
[24]
28 Sushkov A O, Kim W J, Dalvit D A R, et al. New experimental limits on non-Newtonian forces in the micrometer range. Phys Rev Lett, 2011, 107: 171101
[25]
29 Weld D M, Xia J, Cabrera B, et al. New apparatus for detecting micron-scale deviations from Newtonian gravity. Phys Rev D, 2008, 77: 062006
[26]
34 Spero R, Hoskins J K, Newman R, et al. Test of the gravitational inverse-square law at laboratory distances. Phys Rev Lett, 1980, 44: 1645-1648
[27]
46 Lakes R. Experimental limits on the photon mass and cosmic magnetic vector potential. Phys Rev Lett, 1998, 80: 1826-1829
[28]
47 Luo J, Tu L C, Hu Z K, et al. New experimental limit on the photon rest mass with a rotating torsion balance. Phys Rev Lett, 2003, 90: 081801
[29]
48 Tu L C, Shao C G, Luo J, et al. Test of U(1) local gauge invariance in Proca electrodynamics. Phys Lett A, 2006, 352: 267-271
[30]
9 McQueen H W S. Independence of the gravitational constant from gross earth data. Phys Earth Planet Inter, 1981, 26: 6-9
[31]
10 Mohr P J, Taylor B N, Newell D B. CODATA recommended values of the fundamental physical constants: 2010. Rev Mod Phys, 2012, 84: 1527-1605
[32]
11 Kuroda K. Does the time-of-swing method give a correct value of the Newtonian gravitational constant? Phys Rev Lett, 1995, 75: 2796-2798
[33]
23 Parks H V, Faller J E. Simple pendulum determination of the gravitational constant. Phys Rev Lett, 2010, 105: 110801
[34]
30 Smullin S J, Geraci A A, Weld D M, et al. New constraints on Yukawa-type deviations from newtonian gravity at 20 microns. Phys Rev D, 2005, 72: 122001
[35]
31 Hoyle C D, Schmidt U, Heckel B R, et al. Submillimeter test of the gravitational inverse-square law: A search for "large" extra dimensions. Phys Rev Lett, 2001, 86: 1418-1421
[36]
32 Hoyle C D, Kapner D J, Heckel B R, et al. Submillimeter tests of the gravitational inverse-square law. Phys Rev D, 2004, 70: 042004
[37]
33 Kapner D J, Cook T S, Adelberger E G, et al. Tests of the gravitational inverse square law below the dark-energy length scale. Phys Rev Lett, 2007, 98: 021101
[38]
35 Hoskins J K, Newman R D, Spero R, et al. Experimental tests of the gravitational inverse square law for mass separations from 2 to 105 cm. Phys Rev D, 1985, 32: 3084-3095
[39]
36 Chen Y T, Cook A H, Metherell A J F. An experimental test of the inverse square law of gravitational at range of 0.1 m. Proc Roy Soc A, 1984, 394: 47-68
[40]
37 Moody M V, Paik H J. Gauss's law test gravity at short range. Phys Rev Lett, 1993, 70: 1195-1198
[41]
38 Tu L C, Guan S G, Luo J, et al. Null Test of Newtonian inverse-square law at submillimeter range with a dual-modulation torsion pendulum. Phys Rev Lett, 2007, 98: 201101
[42]
39 Yang S Q, Zhan B F, Wang Q L, et al. Test of the gravitational inverse square law at millimeter ranges. Phys Rev Lett, 2012, 108: 081101
[43]
40 Tu L C, Luo J, Gillies G T. The mass of the photon. Rep Prog Phys, 2005, 68: 77-130
[44]
41 Goldhaber A S, Nieto M M. Terrestrial and extraterrestrial limits on the photon mass. Rev Mod Phys, 1971, 43: 277-296
[45]
42 Tu L C, Luo J. Experimental tests of Coulomb's law and the photon rest mass. Metrologia, 2004, 41: S136-S146
[46]
43 Goldhaber A S, Nieto M M. The mass of the photon. Sci Am, 1976, 234: 86-96
[47]
44 Zhang Y Z. Speical Relativity and Its Experimental Foundations. Singapore: World Scientific, 1998. 245-267
[48]
45 Accioly A, Paszko R. Photon mass and gravitational deflection. Phys Rev D, 2004, 69: 107501