全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

精密扭秤实验技术及其应用

DOI: 10.1360/N972014-00548, PP. 2999-3008

Keywords: 扭秤,精密测量,引力常数G,牛顿反平方定律,光子静止质量

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为一种古老而经典的弱力检测工具,扭秤凭借其超高的灵敏度在精密测量领域得到了持续而广泛的应用.本文描述了扭秤的基本工作原理,分析了限制扭秤实验精度的基本因素,在此基础上重点介绍了华中科技大学引力中心实验小组采用扭秤技术在精密测量物理领域的实际应用,如基于扭秤周期法的万有引力常数G的精确测量,基于扭秤双频调制的近距离牛顿反平方定律实验检验,以及基于旋转扭秤调制的光子静止质量实验检验等.

References

[1]  1 Bell R E, Hansen R O. The rise and fall of early oil field technology: The torsion balance gradiometer. Leading Edge, 1998, 17: 81-83
[2]  2 Gillies G T, Ritter R C. Torsion balances, torsion pendulums, and related devices. Rev Sci Instrum, 1993, 64: 283-309
[3]  3 Luo J, Shao C G, Wang D H. Thermal noise limit on the period of a torsion pendulum. Class Quantum Gravity, 2009, 26: 195005
[4]  4 Newman R D, Bantel M K. On determining G using a cryogenic torsion pendulum. Meas Sci Technol, 1999, 10: 445-453
[5]  5 Saulson P R. Thermal noise in mechanical experiments. Phys Rev D, 1990, 42: 2437-2445
[6]  6 Cavendish H. Experiments to determine the density of the Earth. Philos Trans Roy Soc Lon, 1798, 88: 469-526
[7]  7 涂良成, 黎卿, 邵成刚, 等. 万有引力常数G的精确测量. 中国科学: 物理学 力学 天文学, 2011, 41: 691-705
[8]  8 Ezer D, Cameron A G W. Solar evolution with varying G. Can J Phys, 1966, 44: 593-615
[9]  12 Luo J, Hu Z K, Fu X H, et al. Determination of Newtonian gravitational constant G with considering the non-linear effect. Phys Rev D, 1998, 59: 042001
[10]  13 Mohr P J, Taylor B N. CODATA recommended values of the fundamental physical constants: 1998. Rev Mod Phys, 2000, 72: 351-495
[11]  14 Mohr P J, Taylor B N. CODATA recommended values of the fundamental physical constants: 2002. Rev Mod Phys, 2005, 77: 1-107
[12]  15 Hu Z K, Guo J Q, Luo J. Correction of source mass effects in the HUST-99 measurement of G. Phys Rev D, 2005, 71: 127505
[13]  16 Mohr P J, Taylor B N, Newell D B. CODATA recommended values of the fundamental physical constants: 2006. Rev Mod Phys, 2008, 80: 633-730
[14]  17 Luo J, Liu Q, Tu L C, et al. Determination of the Newtonian gravitational constant G with time-of-swing method. Phys Rev Lett, 2009, 102: 240801
[15]  18 Tu L C, Li Q, Wang Q L, et al. New determination of the gravitational constant G with time-of-swing method. Phys Rev D, 2010, 82: 022001
[16]  19 Gundlach J H, Merkowitz S M. Measurement of Newton's constant using a torsion balance with angular acceleration feedback. Phys Rev Lett, 2000, 85: 2869-2872
[17]  20 Quinn T J, Speake C C, Richman S J, et al. A new determination of G using two methods. Phys Rev Lett, 2001, 87: 111101
[18]  21 Armstrong T R, Fitzgerald M P. New measurements of G using the measurement standards laboratory torsion balance. Phys Rev Lett, 2003, 91: 201101
[19]  22 Schlamminger S, Holzschuh E, Kündig W, et al. Measurement of Newton's gravitational constant. Phys Rev D, 2006, 74: 082001
[20]  24 Quinn T, Parks H, Speake C, et al. Improved determination of G using two methods. Phys Rev Lett, 2013, 111: 101102
[21]  25 Floratos E G, Leontaris G K. Low scale unification, Newton's law and extra dimensions. Phys Lett B, 1999, 465: 95-100
[22]  26 Kehagias A, Sfetsos K. Deviations from the 1/r2 Newton law due to extra dimensions. Phys Lett B, 2000, 472: 39-44
[23]  27 Lamoreaux S K. Demostration of the Carsimir force in the 0.6 to 6 μm range. Phys Rev Lett, 1997, 78: 5-8
[24]  28 Sushkov A O, Kim W J, Dalvit D A R, et al. New experimental limits on non-Newtonian forces in the micrometer range. Phys Rev Lett, 2011, 107: 171101
[25]  29 Weld D M, Xia J, Cabrera B, et al. New apparatus for detecting micron-scale deviations from Newtonian gravity. Phys Rev D, 2008, 77: 062006
[26]  34 Spero R, Hoskins J K, Newman R, et al. Test of the gravitational inverse-square law at laboratory distances. Phys Rev Lett, 1980, 44: 1645-1648
[27]  46 Lakes R. Experimental limits on the photon mass and cosmic magnetic vector potential. Phys Rev Lett, 1998, 80: 1826-1829
[28]  47 Luo J, Tu L C, Hu Z K, et al. New experimental limit on the photon rest mass with a rotating torsion balance. Phys Rev Lett, 2003, 90: 081801
[29]  48 Tu L C, Shao C G, Luo J, et al. Test of U(1) local gauge invariance in Proca electrodynamics. Phys Lett A, 2006, 352: 267-271
[30]  9 McQueen H W S. Independence of the gravitational constant from gross earth data. Phys Earth Planet Inter, 1981, 26: 6-9
[31]  10 Mohr P J, Taylor B N, Newell D B. CODATA recommended values of the fundamental physical constants: 2010. Rev Mod Phys, 2012, 84: 1527-1605
[32]  11 Kuroda K. Does the time-of-swing method give a correct value of the Newtonian gravitational constant? Phys Rev Lett, 1995, 75: 2796-2798
[33]  23 Parks H V, Faller J E. Simple pendulum determination of the gravitational constant. Phys Rev Lett, 2010, 105: 110801
[34]  30 Smullin S J, Geraci A A, Weld D M, et al. New constraints on Yukawa-type deviations from newtonian gravity at 20 microns. Phys Rev D, 2005, 72: 122001
[35]  31 Hoyle C D, Schmidt U, Heckel B R, et al. Submillimeter test of the gravitational inverse-square law: A search for "large" extra dimensions. Phys Rev Lett, 2001, 86: 1418-1421
[36]  32 Hoyle C D, Kapner D J, Heckel B R, et al. Submillimeter tests of the gravitational inverse-square law. Phys Rev D, 2004, 70: 042004
[37]  33 Kapner D J, Cook T S, Adelberger E G, et al. Tests of the gravitational inverse square law below the dark-energy length scale. Phys Rev Lett, 2007, 98: 021101
[38]  35 Hoskins J K, Newman R D, Spero R, et al. Experimental tests of the gravitational inverse square law for mass separations from 2 to 105 cm. Phys Rev D, 1985, 32: 3084-3095
[39]  36 Chen Y T, Cook A H, Metherell A J F. An experimental test of the inverse square law of gravitational at range of 0.1 m. Proc Roy Soc A, 1984, 394: 47-68
[40]  37 Moody M V, Paik H J. Gauss's law test gravity at short range. Phys Rev Lett, 1993, 70: 1195-1198
[41]  38 Tu L C, Guan S G, Luo J, et al. Null Test of Newtonian inverse-square law at submillimeter range with a dual-modulation torsion pendulum. Phys Rev Lett, 2007, 98: 201101
[42]  39 Yang S Q, Zhan B F, Wang Q L, et al. Test of the gravitational inverse square law at millimeter ranges. Phys Rev Lett, 2012, 108: 081101
[43]  40 Tu L C, Luo J, Gillies G T. The mass of the photon. Rep Prog Phys, 2005, 68: 77-130
[44]  41 Goldhaber A S, Nieto M M. Terrestrial and extraterrestrial limits on the photon mass. Rev Mod Phys, 1971, 43: 277-296
[45]  42 Tu L C, Luo J. Experimental tests of Coulomb's law and the photon rest mass. Metrologia, 2004, 41: S136-S146
[46]  43 Goldhaber A S, Nieto M M. The mass of the photon. Sci Am, 1976, 234: 86-96
[47]  44 Zhang Y Z. Speical Relativity and Its Experimental Foundations. Singapore: World Scientific, 1998. 245-267
[48]  45 Accioly A, Paszko R. Photon mass and gravitational deflection. Phys Rev D, 2004, 69: 107501

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133