全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

压力作用下Cassie状态的热力学稳定性

DOI: 10.1360/N972014-00530, PP. 3066-3071

Keywords: 润湿,超疏水,能量势垒,稳定性,Cassie状态

Full-Text   Cite this paper   Add to My Lib

Abstract:

维持Cassie状态在压力作用下的稳定性在超疏水材料的实际应用中极其重要.通过将超疏水界面中的液-气界面部分规范为具有自适应性的曲面,建立了柱状阵列微结构的超疏水界面模型,研究了压力作用下Cassie状态的热力学稳定性.结果表明,由于微凸起结构之间悬挂液面能量的不同,Cassie状态有基态、低能态和高能态3种形式;压力驱动Cassie状态由基态向高能态转变过程中界面能量的升高会形成界面能量势垒,这一能量势垒决定了Cassie状态的热力学稳定性并阻碍Cassie状态向过渡态转变.界面能量势垒由前进接触角和界面中固-液接触面积分数决定,因此低表面能物质、分级结构、较低的固-液接触面积分数均可提高界面能量势垒,维持Cassie状态的稳定性.细化微结构尺寸能够降低Cassie状态的界面自由能,从而避免高能Cassie状态的出现和崩溃.

References

[1]  12 Bormashenko E, Pogreb R, Whyman G, et al. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Langmuir, 2007, 23: 12217-12221
[2]  16 Patankar N A. Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach. Langmuir, 2010, 26: 8941-8945
[3]  17 Whyman G, Bormashenko B. How to make the cassie wetting state stable. Langmuir, 2011, 27: 8171-8176
[4]  24 Young T. An essay on the cohesion of fluids. Philos Trans R Soc London, 1805, 95: 65-87
[5]  25 胡颖, 吕瑞东, 刘国杰, 等. 物理化学. 第五版. 北京: 高等教育出版社 2007
[6]  1 Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1-8
[7]  2 Gao X F, Jiang L. Water-repellent legs of water striders. Nature, 2004, 432: 36
[8]  3 Gao X F, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater, 2007, 19: 2213-2217
[9]  4 Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3: 178-182
[10]  5 Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci, 2011, 56: 1-108
[11]  6 李彤, 贺军辉. 刻蚀法制备具有减反增透和超疏水性质的玻璃表面. 科学通报, 2014, 59: 715-721
[12]  7 杨自嵘, 石彦龙, 冯晓娟, 等. 超疏水银纳米涂层的制备及其抗腐蚀性. 科学通报, 2013, 58: 2934-2939
[13]  8 Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546-551
[14]  9 Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 28: 988-994
[15]  10 Wang S T, Jiang L. Definition of superhydrophobic states. Adv Mater, 2007, 19: 3423-3424
[16]  11 Lafuma A, Quéré D. Superhydrophobic states. Nat Mater, 2003, 2: 457-460
[17]  13 Manukyan G, Oh J M, van den Ende D, et al. Electrical switching of wetting states on superhydrophobic surfaces: A Route towards reversible Cassie-to-Wenzel transitions. Phys Rev Lett, 2011, 106: 014501
[18]  14 Extrand C W. Designing for optimum liquid repellency. Langmuir, 2006, 22: 1711-1714
[19]  15 Quanzi Y, Ya-Pu Z. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J Fluid Mech, 2013, 716: 171-188
[20]  18 Nosonovsky M, Bhushan B. Biomimetic superhydrophobic surfaces: Multiscale approach. Nano Lett, 2007, 7: 2633-2637
[21]  19 Papadopoulos P, Mammen L, Deng X, et al. How superhydrophobicity breaks down. Proc Natl Acad Sci USA, 2013, 110: 3254-3258
[22]  20 Emami B, Tafreshi H V, Gad-el-Hak M, et al. Predicting shape and stability of air-water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts. Appl Phys Lett, 2011, 98: 203106
[23]  21 黄建业, 王峰会, 赵翔, 等. 超疏水状态的润湿转变与稳定性测试. 物理化学学报, 2013, 29: 2459-2464
[24]  22 Sbragaglia M, Peters A M, Pirat C, et al. Spontaneous breakdown of superhydrophobicity. Phys Rev Lett, 2007, 99: 156001
[25]  23 Marmur A. Underwater superhydrophobicity: Theoretical feasibility. Langmuir, 2006, 22: 1400-1402

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133