2 Tang X Y, Zhang Y H, Shao M. Atmospheric Chemistry (in Chinese). Beijing: Higher Education Press, 2006 [唐孝炎, 张远航, 邵敏. 大气环境化学. 高等教育出版社,
[2]
3 Brook R, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 2004,109: 2655
[3]
7 Gieré R, Querol X. Solid particulate matter in the atmosphere. Elements, 2010, 6: 215-222
[4]
8 Ravishankara A R. Heterogeneous and multiphase chemistry in the troposphere: Tropospheric processes. Science,1997, 276:1058-1065
[5]
9 Ding J, Zhu T. Research on multi phase reaction of fine particles in the atmosphere (in Chinese). Chin Sci Bull (Chin Ver), 2003, 48: 2005-2013 [丁杰, 朱彤. 大气中细颗粒物表面多相化学反应的研究. 科学通报, 2003, 48: 2005-
[6]
10 Kolb C, Cox R, Abbatt J, et al. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos Chem Phys, 2010,10:10561-10605
[7]
11 Usher C R, Michel A E, Grassian V H. Reactions on mineral dust. Chem Rev, 2003,103: 4883-4940
[8]
17 Ma Q, Liu Y, Liu C, et al. Heterogeneous reaction of acetic acid on MgO, a-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles. Phys Chem Chem Phys, 2012,14: 8403-8409
[9]
18 Zheng B, Zhang Q, Zhang Y, et al. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos Chem Phys Discuss, 2014,14:16731-16776
[10]
20 Dentener F, Carmichael G, Zhang Y, et al. Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res,1996,101: 22869-22889
[11]
22 Zhang X, Gong S, Shen Z, et al. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia1. Network observations. J Geophys Res, 2003,108: 8032-8039
[12]
32 Ullerstam M, Vogt R, Langer S, et al. The kinetics and mechanism of SO2 oxidation by O3 on mineral dust. Phys Chem Chem Phys, 2002, 4: 4694-4699
[13]
33 Usher C R, Al-Hosney H, Carlos-Cuellar S, et al. A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. J Geophys Res, 2002,107: 4713
[14]
34 Li L, Chen Z M, Zhang Y H, et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate. Atmos Chem Phys, 2006, 6: 2453-2464
[15]
35 Wu L Y, Tong S R, Wang W, et al. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate. Atmos Chem Phys, 2011,11: 6593-6605
[16]
36 Zhang X, Zhuang G, Chen J, et al. Heterogeneous reactions of sulfur dioxide on typical mineral particles. J Phys Chem B, 2006,110:12588-12596
[17]
37 Fu H, Wang X, Wu H, et al. Heterogeneous uptake and oxidation of SO2 on iron oxides. J Phys Chem C, 2007,111: 6077-6085
[18]
43 He H, Wang Y, Ma Q, et al. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Sci Rep, 2014, 4: 4172
[19]
44 Jimenez J, Canagaratna M, Donahue N, et al. Evolution of organic aerosols in the atmosphere. Science, 2009, 326:1525-1529
[20]
46 Jang M, Lee S, Kamens R M. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmos Environ, 2003, 37: 2125-2138
[21]
47 Zhang R, Suh I, Zhao J, et al. Atmospheric new particle formation enhanced by organic acids. Science, 2004, 304:1487-1490
[22]
48 Liu C, Chu B, Liu Y, et al. Effect of mineral dust on secondary organic aerosol yield and aerosol size in a-pinene/NOx photo-oxidation. Atmos Environ, 2013, 77: 781-789
[23]
49 Liu C, Liu Y, Ma Q, et al. Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis. Chem Eng J, 2010,163:133-142
[24]
50 Kroll J H, Chan A W, Ng N L, et al. Reactions of semivolatile organics and their effects on secondary organic aerosol formation. Environ Sci Technol, 2007, 41: 3545-3550
[25]
51 Volkamer R, Ziemann P, Molina M. Secondary organic aerosol formation from acetylene (C2H2): Seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos Chem Phys, 2009, 9:1907-1928
[26]
52 Yu G, Bayer A R, Galloway M M, et al. Glyoxal in aqueous ammonium sulfate solutions: Products, kinetics and hydration effects. Environ Sci Technol, 2011, 45: 6336-6342
[27]
53 Liggio J, Li S M. Reversible and irreversible processing of biogenic olefins on acidic aerosols. Atmos Chem Phys, 2008, 8: 2039-2055
[28]
54 Chu B, Hao J, Takekawa H, et al. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx. Atmos Environ, 2012, 55: 26-34
[29]
55 Chu B, Hao J, Li J, et al. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation. Front Environ Sci Engineer 2013, 7:1-9
[30]
57 Reisen F, Arey J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles Basin. Environ Sci Technol, 2005, 39: 64-73
[31]
58 Esteve W, Budzinski H, Villenave E. Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part1: PAHs adsorbed on1-2 mm calibrated graphite particles. Atmos Environ, 2004, 38: 6063-6072
[32]
59 Esteve W, Budzinski H, Villenave E. Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM1650a. Atmos Environ, 2006, 40: 201-211
[33]
60 Fu S, Li K, Xia X J, et al. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China. Bull Environ Contam Toxicol, 2009, 82:162-166
[34]
1 Poschl U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew Chem Int Ed, 2005, 44: 7520-7541
[35]
61 Wu S P, Tao S, Xu F L, et al. Polycyclic aromatic hydrocarbons in dustfall in Tianjin, China. Sci Total Environ, 2005, 345:115-126
[36]
62 Ma J Z, Liu Y C, He H. Heterogeneous reactions between NO2 and anthracene adsorbed on SiO2 and MgO. Atmos Environ, 2011, 45: 917-924
[37]
63 Ma J Z, Liu Y C, He H. Degradation kinetics of anthracene by ozone on mineral oxides. Atmos Environ, 2010, 44: 4446-4453
[38]
64 Ma J, Liu Y, Ma Q, et al. Heterogeneous photochemical reaction of ozone with anthracene adsorbed on mineral dust. Atmos Environ, 2013, 72:165-170
[39]
65 Schauer J J, Rogge W F, Hildemann L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ,1996, 30: 3837-3855
[40]
66 Lin L, Lee M L, Eatough D J. Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment. J Air Waste Manage, 2010, 60: 3-25
[41]
67 Waked A, Afif C, Formenti P, et al. Characterization of organic tracer compounds in PM2.5 at a semi-urban site in Beirut, Lebanon. Atmos Res, 2014,143: 85-94
[42]
70 Bai J, Sun X, Zhang C, et al. The atmospheric degradation reaction of dehydroabietic acid (DHAA) initiated by OH radicals and O3. Chemosphere, 2013, 92: 933-940
[43]
71 Hennigan C J, Sullivan A P, Collett J L, et al. Levoglucosan stability in biomass burning particles exposed to hydroxyl radical. Geophys Res Lett, 2010, 37: L09806
[44]
72 Shiraiwa M, P?schl U, Knopf D A. Multiphase chemical kinetics of NO3 radicals reacting with organic aerosol components from biomass burning. Environ Sci Technol, 2012, 46: 6630-6636
[45]
73 Ding X, Wang X, Xie Z, et al. Impacts of Siberian biomass burning on organic aerosols over the north Pacific Ocean and the Arctic: Primary and secondary organic tracers. Environ Sci Technol, 2013, 47: 3149-3157
[46]
74 Lai C, Liu Y, Ma J, et al. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. Atmos Environ, 2014, 91: 32-39
[47]
75 Ma Q, He H, Liu Y. In situ DRIFTS study of hygroscopic behavior of mineral aerosol. J Environ Sci, 2010, 22: 555-560
[48]
76 Ma Q, Liu Y, He H. The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric relevant particles. J Phys Chem A, 2010,114: 4232-4237
[49]
77 Cooke W F, Wilson J J. A global black carbon aerosol model. J Geophys Res,1996,101:19395-19409
[50]
83 Smith D, Chughtai A. Photochemical effects in the heterogeneous reaction of soot with ozone at low concentrations. J Atmos Chem,1997, 26: 77-91
[51]
84 Smith D, Chughtai A. Reaction kinetics of ozone at low concentrations with n-hexane soot. J Geophys Res,1996,101:19607-19620
[52]
85 Nienow A M, Roberts J T. Heterogeneous chemistry of carbon aerosols. Annu Rev Phys Chem, 2006, 57:105-128
[53]
86 Liu Y, Liu C, Ma J, et al. Structural and hygroscopic changes of soot during heterogeneous reaction with O3. Phys Chem Chem Phys, 2010,12:10896-10903
[54]
87 Han C, Liu Y, Ma J, et al. Effect of soot microstructure on its ozonization reactivity. J Chem Phys, 2012,137: 084507
[55]
88 Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 2005, 43:1731-1742
[56]
89 Han C, Liu Y, Ma J, et al. Key role of organic carbon in the sunlight-enhanced atmospheric aging of soot by O2. Proc Natl Acad Sci USA, 2012,109: 21250-21255
[57]
90 Kirchner U, Scheer V, Vogt R. FTIR spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of NO2 and HNO3 with soot. J Phys Chem A, 2000,104: 8908-8915
[58]
96 Han C, Liu Y, He H. Role of organic carbon in heterogeneous reaction of NO2 with soot. Environ Sci Technol, 2013, 47: 3174-3181
[59]
97 Han C, Liu Y, He H. Heterogeneous photochemical aging of soot by NO2 under simulated sunlight. Atmos Environ, 2013, 64: 270-276
[60]
98 Swietlicki E, Hansson H, Hameri K, et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments: A review. Tellus B, 2008, 60: 432-469
[61]
99 Wang L Y, Zhang Y H, Zhao L J. Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate. J Phys Chem A, 2005,109: 609-614
[62]
100 Liu Y, Zhu T, Zhao D, et al. Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles by micro-Raman spectrometry. Atmos Chem Phys, 2008, 8: 7205-7215
[63]
101 Wang Z S, Fu X, Wang Z S, et al. Research progress of the hygroscopicity of atmospheric particles (in Chinese). Res Environ Sci, 2013, 26: 341-349 [王宗爽, 付晓, 王占山, 等. 大气颗粒物吸湿性研究. 环境科学研究, 2013, 26: 341-
[64]
102 Takahashi Y, Miyoshi T, Yabuki S, et al. Observation of transformation of calcite to gypsum in mineral aerosols by Ca K-edge X-ray absorption near-edge structure (XANES). Atmos Environ, 2008, 42: 6535-6541
[65]
104 Wu Z J, Nowak A, Poulain L, et al. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate. Atmos Chem Phys, 2011,11:12617-12626
[66]
105 Brooks S, Wise M, Cushing M, et al. Deliquescence behavior of organic/ammonium sulfate aerosol. Geophys Res Lett, 2002, 29:1917
[67]
106 Shi Y, Ge M, Wang W. Hygroscopicity of internally mixed aerosol particles containing benzoic acid and inorganic salts. Atmos Environ, 2012, 60: 9-17
[68]
19 Zheng G J, Duan F K, Ma Y L, et al. Exploring the severe winter haze in Beijing. Atmos Chem Phys Discuss, 2014,14:17907-17942
[69]
21 Engelbrecht J P, Derbyshire E. Airborne mineral dust. Elements, 2010, 6: 241-246
[70]
23 Laskin A, Iedema M, Ichkovich A, et al. Direct observation of completely processed calcium carbonate dust particles. Faraday Discuss, 2005,130: 453-468
[71]
24 Sullivan R, Guazzotti S, Sodeman D, et al. Direct observations of the atmospheric processing of Asian mineral dust. Atmos Chem Phys, 2007, 7:1213-1236
[72]
25 Liu Y, Ma Q, He H. Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of a-Al2O3 and MgO. Atmos Chem Phys, 2009, 9: 6273-6286
[73]
26 Yang F, Tan J, Zhao Q, et al. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos Chem Phys, 2011,11: 5207-5219
[74]
27 Charlson R, Schwartz S, Hales J, et al. Climate forcing by anthropogenic aerosols. Science,1992, 255: 423-430
[75]
28 Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev Geophys, 2000, 38: 513-543
[76]
29 Seinfeld J, Pandis S. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: John Wiley,1998
[77]
30 Kasibhatla P, Chameides W, John J S. A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic sulfate aerosols. J Geophys Res,1997,102: 3737-3759
[78]
31 Barrie L A, Yi Y, Leaitch W, et al. A comparison of large-scale atmospheric sulphate aerosol models (COSAM): Overview and highlights. Tellus B, 2001, 53: 615-645
[79]
38 Goodman A, Li P, Usher C, et al. Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles. J Phys Chem A, 2001,105: 6109-6120
[80]
4 He H, Wang X M, Wang Y S, et al. Formation mechanism and control strategies of haze in China (in Chinese). Bull Chin Acad Sci, 2013, 28: 344-352 [贺泓, 王新明, 王跃思, 等. 大气灰霾追因与控制. 中国科学院院刊, 2013, 28: 344-
[81]
5 Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle. Science, 2001, 294: 2119-2124
[82]
6 Intergovernmental Panel on Climate Change. Climate change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007
[83]
12 Rossi M. Heterogeneous reactions on salts. Chem Rev, 2003,103: 4823-4882
[84]
13 Abbatt J. Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction. Chem Rev, 2003,103: 4783-4800
[85]
14 Finlayson-Pitts B, Wingen L, Sumner A, et al. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. Phys Chem Chem Phys, 2003, 5: 223-242
[86]
15 Li H, Zhu T, Zhao D, et al. Kinetics and mechanisms of heterogeneous reaction of NO2 on CaCO3 surfaces under dry and wet conditions. Atmos Chem Phys, 2010,10: 463-474
[87]
16 Al-Abadleh H A, Krueger B J, Ross J L, et al. Phase transitions in calcium nitrate thin films. Chem Commun, 2003, (22): 2796-2797
[88]
39 Zhang D Z, Shi G Y, Iwasaka Y, et al. Mixture of sulfate and nitrate in coastal atmospheric aerosols: Individual particle studies in Qingdao (36°4′N,120°21′E), China. Atmos Environ, 2000, 34: 2669-2679
[89]
40 Ullerstam M, Johnson M, Vogt R, et al. DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust. Atmos Chem Phys, 2003, 3: 2043-2051
[90]
41 Ma Q X, Liu Y C, He H. Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-alumina. J Phys Chem A, 2008,112: 6630-6635
[91]
42 Liu C, Ma Q, Liu Y, et al. Synergistic reaction between SO2 and NO2 on mineral oxides: A potential formation pathway of sulfate aerosol. Phys Chem Chem Phys, 2012,14:1668-1676
[92]
45 Hallquist M, Wenger J, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys, 2009, 9: 5155-5236
[93]
56 Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment. Environ Sci Technol,1992, 26:1278-1284
[94]
68 Hoffmann D, Tilgner A, Iinuma Y, et al. Atmospheric stability of levoglucosan: A detailed laboratory and modeling study. Environ Sci Technol, 2009, 44: 694-699
[95]
69 Bai J, Sun X, Zhang C, et al. The OH-initiated atmospheric reaction mechanism and kinetics for levoglucosan emitted in biomass burning. Chemosphere, 2013, 93: 2004-2010
[96]
78 Kamm S, M?hler O, Naumann K H, et al. The heterogeneous reaction of ozone with soot aerosol. Atmos Environ,1999, 33: 4651-4661
[97]
79 Rogaski C, Golden D, Williams L. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4. Geophys Res Lett,1997, 24: 381-384
[98]
80 Longfellow C, Ravishankara A, Hanson D. Reactive and nonreactive uptake on hydrocarbon soot: HNO3, O3, and N2O5. J Geophys Res, 2000,105: 24345-24350
[99]
81 Bekki S. On the possible role of aircraft-generated soot in the middle latitude ozone depletion. J Geophys Res,1997,102:10751-10758
[100]
82 Aklilu Y A, Michelangeli D V. Box model investigation of the effect of soot particles on ozone downwind from an urban area through heterogeneous reactions. Environ Sci Technol, 2004, 38: 5540-5547
[101]
91 Stadler D, Rossi M J. The reactivity of NO2 and HONO on flame soot at ambient temperature: The influence of combustion conditions. Phys Chem Chem Phys, 2000, 2: 5420-5429
[102]
92 Arens F, Gutzwiller L, Baltensperger U, et al. Heterogeneous reaction of NO2 on diesel soot particles. Environ Sci Technol, 2001, 35: 2191-2199
[103]
93 Longfellow C A, Ravishankara A, Hanson D R. Reactive uptake on hydrocarbon soot: Focus on NO2. J Geophys Res,1999,104:13833-13840
[104]
94 Ammann M, Kalberer M, Jost D, et al. Heterogeneous production of nitrous acid on soot in polluted air masses. Nature,1998, 395:157-160
[105]
95 Aubin D G, Abbatt J P. Interaction of NO2 with hydrocarbon soot: Focus on HONO yield, surface modification, and mechanism. J Phys Chem A, 2007,111: 6263-6273
[106]
103 Ma Q, He H, Liu Y, et al. Heterogeneous and multiphase formation pathways of gypsum in the atmosphere. Phys Chem Chem Phys, 2013,15:19196-19204
[107]
107 Ma Q, He H. Synergistic effect in the humidifying process of atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures. Atmos Environ, 2012, 50: 97-102
[108]
108 Ma Q, Ma J, Liu C, et al. Laboratory study on the hygroscopic behavior of external and internal C2-C4 dicarboxylic acid-NaCl mixtures. Environ Sci Technol, 2013, 47:10381-10388
[109]
109 Laskin A, Moffet R C, Gilles M K, et al. Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids. J Geophys Res, 2012,117: D15302
[110]
110 Drozd G, Woo J, H?kkinen S, et al. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility. Atmos Chem Phys, 2014,14: 5205-5215
[111]
111 Berglen T F, Berntsen T K, Isaksen I S, et al. A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle. J Geophys Res, 2004,109: D19310
[112]
112 Kulmala M, Pirjola L, M?kel? J M. Stable sulphate clusters as a source of new atmospheric particles. Nature, 2000, 404: 66-69
[113]
113 Sipil? M, Berndt T, Pet?j? T, et al. The role of sulfuric acid in atmospheric nucleation. Science, 2010, 327:1243-1246
[114]
114 Laskin A, Gaspar D J, Wang W, et al. Reactions at interfaces as a source of sulfate formation in sea-salt particles, Science, 2003, 301: 340-344
[115]
115 Harris E, Sinha B, van Pinxteren D, et al. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2. Science, 2013, 340: 727-730
[116]
116 Volkamer R, Jimenez J L, San Martini F, et al. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys Res Lett, 2006, 33: L17811
[117]
117 Hodzic A, Jimenez J L, Madronich S, et al. Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmos Chem Phys, 2010,10: 5491-5514
[118]
118 Wu L Y, Tong S R, Zhou L, et al. Synergistic effects between SO2 and HCOOH on α-Fe2O3. J Phys Chem A, 2013,117: 3972-3979