全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

PM2.5源解析方法的比较与评述

DOI: 10.1360/N972014-00975, PP. 109-121

Keywords: PM2.5,源解析,受体模型,方法对比

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前我国PM2.5污染严重,空气质量、大气能见度和人体健康均受到影响和威胁,准确判定解析和定量确定PM2.5的来源是有针对性地制定相关政策法规和控制措施的重要科学前提.本文简要总结目前3大主要颗粒物源解析方法——源清单法、扩散模型法和受体模型法的发展历程和应用特征;以美国亚特兰大采集的PM2.5及化学成分为公共数据平台,评述了目前几种主要PM2.5源解析模型(受体模型和扩散模型)的方法特点以及适用性,分析了不同源解析方法对机动车源、燃煤源、生物质燃烧源、道路尘以及二次源等多种源类的解析特点、结果差异以及可能原因,总结了各种源解析方法在方法及应用上的优势和局限,提出多种方法集成应用和发展混合模型是未来开展颗粒物源解析工作的方向.

References

[1]  1 Zheng M, Zhang Y J, Yan C Q, et al. Review of PM2.5 source apportionment methods in China (in Chinese). Acta Sci Natur Univ Pekinensis, 2014, 50:1141-1154 [郑玫, 张延君, 闫才青, 等. 中国PM2.5来源解析方法综述. 北京大学学报(自然科学版), 2014, 50:1141-
[2]  2 Tang X Y, Zhang Y H, Shao M. Atmospheric Environmental Chemistry (in Chinese). Beijing: Higher Education Press, 2006 [唐孝炎, 张远航, 邵敏. 大气环境化学. 北京: 高等教育出版社,
[3]  4 Dong W X, Xing J, Wang S X. Temporal and spatial distribution of anthropogenic ammonia emissions in China:1994-2006 (in Chinese). J Environ Sci, 2010, 31:1457-1463 [董文煊, 邢佳, 王书肖.1994~2006年中国人为源大气氨排放时空分布. 环境科学, 2010, 31:1457-
[4]  10 Dong Y Q, Chen C H, Huang C, et al. Anthropogenic emissions and distribution of ammonia over the Yangtze River Delta (in Chinese). Acta Sci Circum, 2009, 29:1611-1617 [董艳强, 陈长虹, 黄成, 等. 长江三角洲地区人为源氨排放清单及分布特征. 环境科学学报, 2009, 29:1611-
[5]  11 Huang C, Chen C H, Li L, et al. Anthropogenic air pollutant emission characteristics in the Yangtze River Delta region, China (in Chinese). Acta Sci Circum, 2011, 31:1858-1871 [黄成, 陈长虹, 李莉, 等. 长江三角洲地区人为源大气污染物排放特征研究. 环境科学学报, 2011, 31:1858-
[6]  24 Kwok R H F, Napelenok S L, Baker K R. Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model. Atmos Environ, 2013, 80: 398-407
[7]  25 Wang Z S, Chien C J, Tonnesen G S. Development of a tagged species source apportionment algorithm to characterize three-dimensional transport and transformation of precursors and secondary pollutants. J Geophys Res Atmos, 2009,114: D21206
[8]  36 Cooper J A, Watson Jr J G. Receptor oriented methods of air particulate source apportionment. J Air Pollut Control Assoc,1980, 30:1116-1125
[9]  37 Xie M, Piedrahita R, Dutton S J, et al. Positive matrix factorization of a 32-month series of daily PM2.5 speciation data with incorporation of temperature stratification. Atmos Environ, 2013, 65:11-20
[10]  38 Blifford Jr I H, Meeker G O. A factor analysis model of large scale pollution. Atmos Environ,1967,1:147-157
[11]  39 Miller M, Friedlander S, Hidy G. A chemical element balance for the Pasadena aerosol. J Colloid Interface Sci,1972, 39:165-176
[12]  41 Zheng M, Zhang Y J, Yan C Q, et al. Establishing PM2.5 industrial source profiles in Shanghai (in Chinese). China Environ Sci, 2013, 33:1354-1359 [郑玫, 张延君, 闫才青, 等. 上海PM2.5工业源谱的建立. 中国环境科学, 2013, 33:1354-
[13]  42 Paatero P, Tapper U. Analysis of different modes of factor analysis as least squares fit problems. Chemometr Intell Lab Syst,1993,18:183-194
[14]  43 Song Y, Zhang Y H, Xie S D, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ, 2006, 40:1526-1537
[15]  49 Marmur A, Park S K, Mulholland J A, et al. Source apportionment of PM2.5 in the southeastern United States using receptor and emissions-based models: Conceptual differences and implications for time-series health studies. Atmos Environ, 2006, 40: 2533-2551
[16]  50 Feng Y C, Bai Z P, Zhu T. The principle and application of improved-source-apportionment technique of atmospheric particulate matter (in Chinese). J Environ Sci, 2009, 23(Suppl):106-108 [冯银厂, 白志鹏, 朱坦. 大气颗粒物二重源解析技术原理与应用. 环境科学, 2009, 23(增刊):106-
[17]  53 Liu W, Wang Y, Russell A, et al. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmos Environ, 2006, 40: 445-466
[18]  54 Liu X S, Zhang E K, Cao J J, et al. Characterization of carbonaceous aerosols during spring of 2005 in Xi'an (in Chinese). Chin J Process Eng, 2006, 6: 5-9 [刘随心, 张二科, 曹军骥, 等. 西安2005年春季大气碳气溶胶的理化特征. 过程工程学报, 2006, 6: 5-
[19]  60 Rahn K A. The Mn/V ratio as a tracer of large-scale sources of pollution aerosol for the Arctic. Atmos Environ,1981,15:1457-1464
[20]  61 Han L H, Zhuang G S, Sun Y L, et al. Local and non-local sources of airborne particulate pollution at Beijing. Sci China Ser B Chem, 2005, 48: 253-264
[21]  62 Zheng M, Cheng Y, Zeng L, et al. Developing chemical signatures of particulate air pollution in the Pearl River Delta region, China. J Environ Sci, 2011, 23:1143-1149
[22]  63 Bollh?fer A, Rosman K. Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochim Cosmochim Acta, 2001, 65:1727-1740
[23]  67 Xu L, Zheng M, Ding X, et al. Modern and fossil contributions to polycyclic aromatic hydrocarbons in PM2.5 from North Birmingham, Alabama in the southeastern US. Environ Sci Technol, 2012, 46:1422-1429
[24]  68 Zheng M, Ke L, Edgerton E S, et al. Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data. J Geophys Res Atmos, 2006,111: D10S06
[25]  70 Bench G, Fallon S, Schichtel B, et al. Relative contributions of fossil and contemporary carbon sources to PM2.5 aerosols at nine Interagency Monitoring for Protection of Visual Environments (IMPROVE) network sites. J Geophys Res Atmos, 2007,112: D10205
[26]  72 Chu D A, Kaufman Y J, Zibordi G, et al. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J Geophys Res Atmos, 2003,108: 4661
[27]  73 Dubovik O, Lapyonok T, Kaufman Y, et al. Retrieving global aerosol sources from satellites using inverse modeling. Atmos Chem Phys, 2008, 8: 209-250
[28]  85 Drewnick F, Hings S S, Curtius J, et al. Measurement of fine particulate and gas-phase species during the New Year's fireworks 2005 in Mainz, Germany. Atmos Environ, 2006, 40: 4316-4327
[29]  86 Wang Y, Zhuang G, Xu C, et al. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos Environ, 2007, 41: 417-431
[30]  87 Appel K, Pouliot G, Simon H, et al. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. Geosci Model Dev Discuss, 2013, 6: 883-899
[31]  93 Carlton A G, Bhave P V, Napelenok S L, et al. Model representation of secondary organic aerosol in CMAQ v4.7. Environ Sci Technol, 2010, 44: 8553-8560
[32]  94 Baek J, Hu Y, Odman M T, et al. Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semi-volatile organic compounds. J Geophys Res Atmos, 2011,116: D22204
[33]  12 Wu X L. The study of air pollution emission inventory in Yangtze Delta (in Chinese). Master Dissertation. Shanghai: Fudan University, 2009 [吴晓璐. 长三角地区大气污染物排放清单研究. 硕士学位论文. 上海: 复旦大学,
[34]  13 Zhao B. The research of air pollution source emission for the north China (in Chinese). Master Dissertation. Beijing: Chinese Academy of Meteorological Sciences, 2007 [赵斌. 华北地区大气污染源排放状况研究. 硕士学位论文. 北京: 中国气象科学研究院,
[35]  14 Zhang Y, Dore A, Ma L, et al. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ Pollut, 2010,158: 490-501
[36]  15 Zheng J, Zhang L, Che W, et al. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos Environ, 2009, 43: 5112-5122
[37]  16 Zheng J, He M, Shen X, et al. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China. Sci Total Environ, 2012, 438:189-200
[38]  17 Zhao B, Ma J Z. Development of an air pollutant emission inventory for Tianjin (in Chinese). Acta Sci Circum, 2008, 28: 368-375 [赵斌, 马建中. 天津市大气污染源排放清单的建立. 环境科学学报, 2008, 28: 368-
[39]  18 Wang H, Chen C, Huang C, et al. On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Sci Total Environ, 2008, 398: 60-67
[40]  19 Zhang Q, Xu J, Wang G, et al. Vehicle emission inventories projection based on dynamic emission factors: A case study of Hangzhou, China. Atmos Environ, 2008, 42: 4989-5002
[41]  20 Huo H, Zhang Q, He K, et al. High-resolution vehicular emission inventory using a link-based method: A case study of light-duty vehicles in Beijing. Environ Sci Technol, 2009, 43: 2394-2399
[42]  21 Liu H, He K, Wang Q, et al. Comparison of vehicle activity and emission inventory between Beijing and Shanghai. J Air Waste Manage, 2007, 57:1172-1177
[43]  22 Burr M J, Zhang Y. Source apportionment of fine particulate matter over the Eastern U.S. Part I: Source sensitivity simulations using CMAQ with the Brute Force method. Atmos Pollut Res, 2011, 2: 300-317
[44]  23 Koo B, Wilson G M, Morris R E, et al. Comparison of source apportionment and sensitivity analysis in a particulate matter air quality model. Environ Sci Technol, 2009, 43: 6669-6675
[45]  26 Burr M J, Zhang Y. Source apportionment of fine particulate matter over the Eastern U.S. Part II: Source apportionment simulations using CAMx/PSAT and comparisons with CMAQ source sensitivity simulations. Atmos Pollut Res, 2011, 2: 318-336
[46]  27 Wang Z S, Li X Q, Wang Z S, et al. Application status of models-3/CMAQ in environmental management (in Chinese). Environ Sci Technol, 2013,1: 386-391 [王占山, 李晓倩, 王宗爽, 等. 空气质量模型CMAQ的国内外研究现状. 环境科学与技术, 2013,1: 386-
[47]  28 Byun D, Schere K L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev, 2006, 59: 51
[48]  29 Baek J. Improving aerosol simulations: Assessing and improving emissions and secondary organic aerosol formation in air quality modeling. Doctor Dissertation. Atlanta: Georgia Institute of Tecnology, 2009
[49]  3 Department of Science, Technology and standards, Ministry of Environmental Production, Nankai University, Chinese Research Academy of Environmental Sciences, et al. Guidance for particulate matter source apportionment (in Chinese), 2013. 8 [环境保护部科技标准司, 南开大学, 中国环境科学研究院, 等. 大气颗粒物来源解析技术指南, 2013.
[50]  5 Wang L T, Zhang Q, Hao J M, et al. Anthropogenic CO emission inventory of Mainland China (in Chinese). Acta Sci Circum, 2005, 25:1580-1585 [王丽涛, 张强, 郝吉明, 等. 中国大陆CO人为源排放清单. 环境科学学报, 2005, 25:1580-
[51]  6 Zhang Q, Klimont Z, Streets D G, et al. Emission model of anthropogenic particulate matter in China and application in 2001 (in Chinese). Prog Nat Sci, 2006,16: 223-231 [张强, 霍红, 贺克斌. 中国人为源颗粒物排放模型及2001年排放清单估算. 自然科学进展, 2006,16: 223-
[52]  7 Zhang C Y, Wang S X, Zhao Y, et al. Current status and future prospects of anthropogenic particulate matter emissions in China (in Chinese). J Environ Sci, 2009, 30:1881-1887 [张楚莹, 王书肖, 赵瑜, 等. 中国人为源颗粒物排放现状与趋势分析. 环境科学, 2009, 30:1881-
[53]  8 Song X Y, Xie S D. Development of vehicular emission inventory in China (in Chinese). J Environ Sci, 2006, 27:1041-1045 [宋翔宇, 谢绍东. 中国机动车排放清单的建立. 环境科学, 2006, 27:1041-
[54]  9 Cao G L, Zhang X Y, Gong S L, et al. Emission inventories of primary particles and pollutant gases for China (in Chinese). Chin Sci Bull (Chin Ver), 2011, 56: 261-268 [曹国良, 张小曳, 龚山陵, 等. 中国区域主要颗粒物及污染气体的排放源清单. 科学通报, 2011, 56: 261-
[55]  30 Chow J C, Watson J G, Green M C, et al. Middle-and neighborhood-scale variations of PM10 source contributions in Las Vegas, Nevada. J Air Waste Manage,1999, 49: 641-654
[56]  31 Baek J, Park S K, Hu Y, et al. Source apportionment of fine organic aerosol using CMAQ tracers. In: Proceedings of the Models-3 Use's workshop. North Carolina: Research Triangle Park, 2005.1-6
[57]  32 Dai S G, Zhu T, Bai Z P. Application and development of receptor models for the source apportionment of airborne particulate matter (in Chinese). China Environ Sci,1995,15: 252-257 [戴树桂, 朱坦. 受体模型在大气颗粒物源解析中的应用和进展. 中国环境科学,1995,15: 252-
[58]  33 Chen C G, Zhan X, Li N, et al. Composition analysis of airborne particles in Chongqing (in Chinese). Environ Chem, 2002, 21: 207-208 [陈昌国, 詹忻, 李纳, 等. 重庆市区大气颗粒物的物相组成分析. 环境化学, 2002, 21: 207-
[59]  34 Chen T H, Feng J H, Zhang Y, et al. Components of atmospheric particles in Hefei city and their environmental significance (in Chinese). Acta Petrol Et Mineral, 2001, 20: 433-436 [陈天虎, 冯军会, 张宇, 等. 合肥市大气颗粒物组成及其环境指示意义. 岩石矿物学杂志, 2001, 20: 433-
[60]  35 Chow J C, Watson J G, Lowenthal D H, et al. PM10 source apportionment in California's San Joaquin Valley. Atmos Environ A Gen,1992, 26: 3335-3354
[61]  40 Watson J G, Cooper J A, Huntzicker J J. The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos Environ,1984,18:1347-1355
[62]  44 Ke L, Liu W, Wang Y, et al. Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance. Sci Total Environ, 2008, 394: 290-302
[63]  45 Schauer J J, Rogge W F, Hildemann L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ,1996, 30: 3837-3855
[64]  46 Zheng M, Cass G R, Schauer J J, et al. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ Sci Technol, 2002, 36: 2361-2371
[65]  47 Zheng M, Cass G R, Ke L, et al. Source apportionment of daily fine particulate matter at Jefferson street, Atlanta, GA, during summer and winter. J Air Waste Manage, 2007, 57: 228-242
[66]  48 Marmur A, Mulholland J A, Russell A G. Optimized variable source-profile approach for source apportionment. Atmos Environ, 2007, 41: 493-505
[67]  51 Shi G L, Tian Y Z, Zhang Y F, et al. Estimation of the concentrations of primary and secondary organic carbon in ambient particulate matter: Application of the CMB-Iteration method. Atmos Environ, 2011, 45: 5692-5698
[68]  52 Shi G L, Feng Y C, Zeng F, et al. Use of a nonnegative constrained principal component regression chemical mass balance model to study the contributions of nearly collinear sources. Environ Sci Technol, 2009, 43: 8867-8873
[69]  55 Bourotte C, Forti M C, Taniguchi S, et al. A wintertime study of PAHs in fine and coarse aerosols in S?o Paulo city, Brazil. Atmos Environ, 2005, 39: 3799-3811
[70]  56 Li C K, Kamens R M. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos Environ A Gen,1993, 27: 523-532
[71]  57 Simcik M F, Eisenreich S J, Lioy P J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ,1999, 33: 5071-5079
[72]  58 Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem, 2002, 33: 489-515
[73]  59 Arimoto R, Duce R A, Savoie D L, et al. Trace elements in aerosol particles from Bermuda and Barbados: Concentrations, sources and relationships to aerosol sulfate. J Atmos Chem,1992,14: 439-457
[74]  64 Hopper J, Ross H. Regional source discrimination of atmospheric aerosols in Europe using the isotopic composition of lead. Tellus B,1991, 43: 45-60
[75]  65 Bollh?fer A, Rosman K. Isotopic source signatures for atmospheric lead: The Southern Hemisphere. Geochim Cosmochim Acta, 2000, 64: 3251-3262
[76]  66 Wang W, Liu X D, Zhao L W, et al. Assessment of the phase-out of leaded gasoline in Tianjin, China using isotope technique (in Chinese). China Environm Sci, 2003, 23: 627-630 [王婉, 刘咸德, 赵立蔚, 等. 用同位素方法评估天津市汽油无铅化进程. 中国环境科学, 2003, 23: 627-
[77]  69 Sheesley R J, Krus? M, Krecl P, et al. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis. Atmos Chem Phys, 2009, 9: 3347-3356
[78]  71 Song Y, Miao W J, Liu B, et al. Identifying anthropogenic and natural influences on extreme pollution of respirable suspended particulates in Beijing using backward trajectory analysis. J Hazard Mater, 2008,154: 459-468
[79]  74 Lee D, Balachandran S, Pachon J, et al. Ensemble-trained PM2.5 source apportionment approach for health studies. Environ Sci Technol, 2009, 43: 7023-7031
[80]  75 Hu Y, Balachandran S, Pachon J, et al. Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach. Atmos Chem Phys, 2014,14: 5415-5431
[81]  76 Shi G L, Li X, Feng Y C, et al. Combined source apportionment, using positive matrix factorization-chemical mass balance and principal component analysis/multiple linear regression-chemical mass balance models. Atmos Environ, 2009, 43: 2929-2937
[82]  77 Hansen D A, Edgerton E S, Hartsell B E, et al. The southeastern aerosol research and characterization study: Part1—Overview. J Air Waste Manage, 2003, 53:1460-1471
[83]  78 Liu W, Wang Y, Russell A, et al. Atmospheric aerosol over two urban-rural pairs in the southeastern United States: Chemical composition and possible sources. Atmos Environ, 2005, 39: 4453-4470
[84]  79 Yan B. Characterization and source apportionment of ambient PM2.5 in Atlanta, Georgia: On-road emission, biomass combustion and SOA impact. Doctor Dissertation. Atlanta: Georgia Institute of Technology, 2009
[85]  80 Balachandran S, Pachon J E, Hu Y, et al. Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis. Atmos Environ, 2012, 61: 387-394
[86]  81 Sawyer R F, Harley R A, Cadle S, et al. Mobile sources critical review:1998 NARSTO assessment. Atmos Environ, 2000, 34: 2161-2181
[87]  82 Li J D. Chemical compositions and source apportionment of inhalable particulate matter at suburban area of Changsha (in Chinese). Master Dissertation. Changsha: Central South University, 2009 [李剑东. 长沙市郊区大气可吸入颗粒物化学组分特性及源解析. 硕士学位论文. 长沙: 中南大学,
[88]  83 Wang C F, Chang C Y, Tsai S F, et al. Characteristics of road dust from different sampling sites in northern Taiwan. J Air Waste Manage, 2005, 55:1236-1244
[89]  84 Duvall R, Majestic B, Shafer M, et al. The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmos Environ, 2008, 42: 5872-5884
[90]  88 Watson J G, Chow J C. Reconciling urban fugitive dust emissions inventory and ambient source contribution estimates: Summary of current knowledge and needed research. DRI Document No. 6110.4F, 2000. 240
[91]  89 Rizzo M J, Scheff P A. Fine particulate source apportionment using data from the USEPA speciation trends network in Chicago, Illinois: Comparison of two source apportionment models. Atmos Environ, 2007, 41: 6276-6288
[92]  90 Lee S, Liu W, Wang Y H, et al. Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmos Environ, 2008, 42: 4126-4137
[93]  91 Chang W L, Bhave P V, Brown S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review. Aerosol Sci Technol, 2011, 45: 665-695
[94]  92 Pekney N J, Davidson C I, Robinson A, et al. Major source categories for PM2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci Technol, 2006, 40: 910-924

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133