3 Kelsey D E. On ultrahigh-temperature crustal metamorphism. Gondwana Res, 2008,13:1-29
[2]
4 Brown M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 2006, 34: 961-964
[3]
5 Ague J J, Eckert J O, Chu X, et al. Discovery of ultrahigh-temperature metamorphism in the Acadian orogen, Connecticut, USA. Geology, 2013, 41: 271-274
[4]
7 Lund M D, Piazolo S, Harley S L. Ultrahigh temperature deformation microstructures in felsic granulites of the Napier Complex, Antarctica. Tectonophysics, 2006, 427:133-151
[5]
8 Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200 km. Nature, 2000, 407: 734-736
[6]
9 Song S G, Zhang L F, Niu Y L. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Mineral, 2004, 89:1330-1336
[7]
10 O'Brien P J, Kr?ner A, Jaeckel P, et al. Petrological and isotopic studies on Palaeozoic high-pressure granulites, Góry Sowie Mts, Polish Sudetes. J Petrol,1997, 38: 433-456
[8]
11 Ague J J, Eckert J O. Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, USA. Am Mineral, 2012, 97: 840-855
[9]
12 Proyer A, Habler G, Abart R, et al. TiO2 exsolution from garnet by open-system precipitation: Evidence from crystallographic and shape preferred orientation of rutile inclusions. Contrib Mineral Petrol, 2013,166: 211-234
[10]
16 Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res, 2012, 222-223: 55-76
[11]
17 Guo J H, Sun M, Chen F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 2005, 24: 629-642
[12]
18 Kr?ner A, Wilde S A, Zhao G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Res, 2006,146: 45-67
[13]
21 Faure M, Trap P, Lin W, et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the in Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes, 2007, 30: 95-106
[14]
22 Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: Implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Res, 2007,156: 85-106
[15]
23 Wang Z H. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen. Precambrian Res, 2009,170: 73-87
[16]
24 Zhao G C, Wilde S A, Guo J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Res, 2010,177: 266-276
[17]
25 Santosh M, Liu S J, Tsunogae T, et al. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Res, 2012, 222-223: 77-106
[18]
26 Santosh M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res, 2010,178:149-167
31 Santosh M, Tsunogae T, Li J H. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Res, 2007,11: 263-285
[21]
32 Liu S J, Li J H, Santosh M. First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton. Contrib Mineral Petrol, 2010,159: 225-235
[22]
33 Santosh M, Wilde S A, Li J H. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Res, 2007,159:178-196
[23]
1 Harley S L. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In: Treloar P J, O'Brien P, eds. What Controls Metamorphism and Metamorphic Reactions? Geol Soc Lon Spec Pub,1998,138: 81-107
[24]
2 Harley S L. Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol, 2008, 26:125-154
[25]
6 Clark C, Fitzsimons I C W, Healy D, et al. How does the continental crust get really hot? Elements, 2011, 7: 235-240
[26]
13 Zhang R Y, Zhai S M, Fei Y W, et al. Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: The significance of exsolved rutile in garnet. Earth Planet Sci Lett, 2003, 216: 591-601
[27]
14 Jiao S J, Guo J H. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China Craton and its implications. Am Mineral, 2011, 96: 250-260
[28]
15 Liu D Y, Nutman A P, Compston W, et al. Remnants of 33800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology,1992, 20: 339-342
[29]
19 Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 2003, 22: 383-397
[30]
20 Kusky T M, Li J H, Santosh M. The Paleoproterozoic North Hebei Orogen: North China Craton's collisional suture with the Columbia supercontinent. Gondwana Res, 2007,12: 4-28
[31]
27 Guo J H, Peng P, Chen Y, et al. UHT sapphirine granulite metamorphism at1.93-1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Res, 2012, 222-223:124-142
[32]
28 Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005,136:177-202
[33]
29 Peng P, Guo J H, Windley B F, et al. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction. Precambrian Res, 2012, 222-223:107-123
[34]
34 Yin C Q, Zhao G C, Sun M, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Res, 2009,174: 78-94
[35]
35 Yin C Q, Zhao G C, Guo J H, et al. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 2011,122: 25-38
[36]
36 Liu L, Wang C, Cao Y T, et al. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 2012,136-139:10-26
[37]
37 Bhattacharya A, Mohanty L, Maji A, et al. Non-ideal mixing in the phlogopite-annite binary: Constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol,1992,111: 87-93
[38]
38 Liu S J, Tsunogae T, Li W S, et al. Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos, 2012,148: 54-70
[39]
39 Hokada T. Feldspar thermometry in ultrahigh-temperature metamorphic rocks: Evidence of crustal metamorphism attaining ~1100℃ in the Archean Napier Complex, East Antarctica. Am Mineral, 2001, 86: 932-938
[40]
40 Fuhrman M L, Lindsley D H. Ternary-feldspar modeling and thermometry. Am Mineral,1988, 73: 201-215
[41]
41 Elkins L T, Grove T L. Ternary feldspar experiments and thermodynamic models. Am Mineral,1990, 75: 544-559
[42]
42 Wen S X, Nekvasil H. SOLVALC: An interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comput Geosci,1994, 20:1025-1040
[43]
43 Ono S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res,1998,103:18253-18267
[44]
44 Hwang S L, Yui T F, Chu H T, et al. On the origin of oriented rutile needles in garnet from UHP eclogites. J Metamorph Geol, 2007, 25: 349-362