全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

华北克拉通孔兹岩带含夕线石泥质麻粒岩中石榴子石的金红石出溶

DOI: 10.1007/s11434-014-0598-6, PP. 189-197

Keywords: 石榴子石中定向,针状金红石,出溶作用,超高温变质作用,孔兹岩带,华北克拉通

Full-Text   Cite this paper   Add to My Lib

Abstract:

对华北克拉通孔兹岩带泥质麻粒岩样品中石榴子石的金红石出溶进行报道.该麻粒岩样品的矿物组合为石榴子石、夕线石、条纹长石、黑云母和石英.长石地质温度计在压力1×106kPa时给出的峰期温度大约为980℃,表明该样品曾经历了超高温变质作用.激光拉曼分析显示石榴子石中的定向针状金红石具有特征谱峰446~448和610cm–1.在显微镜下可以观察到3~4组相互平行定向的针状金红石包体,因此认为它们是在变质峰期后抬升和降温过程中由石榴子石出溶形成.石榴子石出溶定向针状金红石可以在华北克拉通孔兹岩带用来指示超高温变质作用,当然也同样对其他超高温变质地体适用.

References

[1]  3 Kelsey D E. On ultrahigh-temperature crustal metamorphism. Gondwana Res, 2008,13:1-29
[2]  4 Brown M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 2006, 34: 961-964
[3]  5 Ague J J, Eckert J O, Chu X, et al. Discovery of ultrahigh-temperature metamorphism in the Acadian orogen, Connecticut, USA. Geology, 2013, 41: 271-274
[4]  7 Lund M D, Piazolo S, Harley S L. Ultrahigh temperature deformation microstructures in felsic granulites of the Napier Complex, Antarctica. Tectonophysics, 2006, 427:133-151
[5]  8 Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200 km. Nature, 2000, 407: 734-736
[6]  9 Song S G, Zhang L F, Niu Y L. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Mineral, 2004, 89:1330-1336
[7]  10 O'Brien P J, Kr?ner A, Jaeckel P, et al. Petrological and isotopic studies on Palaeozoic high-pressure granulites, Góry Sowie Mts, Polish Sudetes. J Petrol,1997, 38: 433-456
[8]  11 Ague J J, Eckert J O. Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, USA. Am Mineral, 2012, 97: 840-855
[9]  12 Proyer A, Habler G, Abart R, et al. TiO2 exsolution from garnet by open-system precipitation: Evidence from crystallographic and shape preferred orientation of rutile inclusions. Contrib Mineral Petrol, 2013,166: 211-234
[10]  16 Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res, 2012, 222-223: 55-76
[11]  17 Guo J H, Sun M, Chen F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 2005, 24: 629-642
[12]  18 Kr?ner A, Wilde S A, Zhao G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Res, 2006,146: 45-67
[13]  21 Faure M, Trap P, Lin W, et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the in Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes, 2007, 30: 95-106
[14]  22 Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: Implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Res, 2007,156: 85-106
[15]  23 Wang Z H. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen. Precambrian Res, 2009,170: 73-87
[16]  24 Zhao G C, Wilde S A, Guo J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Res, 2010,177: 266-276
[17]  25 Santosh M, Liu S J, Tsunogae T, et al. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Res, 2012, 222-223: 77-106
[18]  26 Santosh M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res, 2010,178:149-167
[19]  30 卢良兆, 靳是琴, 徐学纯, 等. 内蒙古南部早前寒武纪孔兹岩系成因和含矿性. 长春: 吉林科学技术出版社,1992
[20]  31 Santosh M, Tsunogae T, Li J H. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Res, 2007,11: 263-285
[21]  32 Liu S J, Li J H, Santosh M. First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton. Contrib Mineral Petrol, 2010,159: 225-235
[22]  33 Santosh M, Wilde S A, Li J H. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Res, 2007,159:178-196
[23]  1 Harley S L. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In: Treloar P J, O'Brien P, eds. What Controls Metamorphism and Metamorphic Reactions? Geol Soc Lon Spec Pub,1998,138: 81-107
[24]  2 Harley S L. Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol, 2008, 26:125-154
[25]  6 Clark C, Fitzsimons I C W, Healy D, et al. How does the continental crust get really hot? Elements, 2011, 7: 235-240
[26]  13 Zhang R Y, Zhai S M, Fei Y W, et al. Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: The significance of exsolved rutile in garnet. Earth Planet Sci Lett, 2003, 216: 591-601
[27]  14 Jiao S J, Guo J H. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China Craton and its implications. Am Mineral, 2011, 96: 250-260
[28]  15 Liu D Y, Nutman A P, Compston W, et al. Remnants of 33800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology,1992, 20: 339-342
[29]  19 Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 2003, 22: 383-397
[30]  20 Kusky T M, Li J H, Santosh M. The Paleoproterozoic North Hebei Orogen: North China Craton's collisional suture with the Columbia supercontinent. Gondwana Res, 2007,12: 4-28
[31]  27 Guo J H, Peng P, Chen Y, et al. UHT sapphirine granulite metamorphism at1.93-1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Res, 2012, 222-223:124-142
[32]  28 Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005,136:177-202
[33]  29 Peng P, Guo J H, Windley B F, et al. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction. Precambrian Res, 2012, 222-223:107-123
[34]  34 Yin C Q, Zhao G C, Sun M, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Res, 2009,174: 78-94
[35]  35 Yin C Q, Zhao G C, Guo J H, et al. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 2011,122: 25-38
[36]  36 Liu L, Wang C, Cao Y T, et al. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 2012,136-139:10-26
[37]  37 Bhattacharya A, Mohanty L, Maji A, et al. Non-ideal mixing in the phlogopite-annite binary: Constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol,1992,111: 87-93
[38]  38 Liu S J, Tsunogae T, Li W S, et al. Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos, 2012,148: 54-70
[39]  39 Hokada T. Feldspar thermometry in ultrahigh-temperature metamorphic rocks: Evidence of crustal metamorphism attaining ~1100℃ in the Archean Napier Complex, East Antarctica. Am Mineral, 2001, 86: 932-938
[40]  40 Fuhrman M L, Lindsley D H. Ternary-feldspar modeling and thermometry. Am Mineral,1988, 73: 201-215
[41]  41 Elkins L T, Grove T L. Ternary feldspar experiments and thermodynamic models. Am Mineral,1990, 75: 544-559
[42]  42 Wen S X, Nekvasil H. SOLVALC: An interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comput Geosci,1994, 20:1025-1040
[43]  43 Ono S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res,1998,103:18253-18267
[44]  44 Hwang S L, Yui T F, Chu H T, et al. On the origin of oriented rutile needles in garnet from UHP eclogites. J Metamorph Geol, 2007, 25: 349-362

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133