8 Gurav J L, Jung I K, Park H H, et al. Silica aerogel: Synthesis and applications. J Nanomater, 2010, 2010:1-11
[2]
9 Saboktakin A, Saboktakin M R. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol, 2015, 72: 230-234
[3]
10 Neugebauer A, Chen K, Tang A, et al. Thermal conductivity and characterization of compacted, granular silica aerogel. Energ Buidings, 2014, 79: 47-57
[4]
11 Cuce E, Cuce P M, Wood C J, et al. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew Sust Energ Rev, 2014, 34: 273-299
[5]
12 Yang S M, Tao W Q. Heat Transfer (in Chinese). 4th ed. Beijing: Higher Education Press, 2006 [杨世铭, 陶文铨. 传热学. 第四版. 北京: 高等教育出版社,
[6]
13 Liu Y S. Heat Transfer Mechanism and Thermal Design of Nanoporous Insulating Materials (in Chinese). Beijing: University of Science and Technology, 2007 [刘育松. 纳米孔绝热材料的传热机理及热设计. 北京: 北京科技大学,
[7]
14 Hrubesh L W, Pekala R W. Thermal properties of organic and inorganic aerogels. J Mater Res,1994, 9: 731-738
[8]
15 Good B S. Structure and thermal conductivity of silica aerogels from computer simulations. Hydrogen Cycle-Gener Stor Fuel Cells, 2006, 885: 227-232
[9]
16 Warrier P, Yuan Y, Beck M P, et al. Heat transfer in nanoparticle suspensions: Modeling the thermal conductivity of nanofluids. Amer Instit Chem Eng J, 2010, 56: 3243-3256
[10]
17 Bi C, Tang G H. Effective thermal conductivity of the solid backbone of aerogel. Int J Heat Mass Transfer, 2013, 64: 452-456
[11]
18 Wang J, Kuhn J, Lu X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids,1995,186: 296-300
[12]
19 Zeng S Q, Hunt A, Greif R. Theoretical modeling of carbon content to minimize heat transfer in silica aerogel. J Non-Cryst Solids,1995,186: 271-277
[13]
20 Zhao J J, Duan Y Y, Wang X D, et al. Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J Nanopart Res, 2012,14:1-15
[14]
21 Reichenauer G, Heinemann U, Ebert H P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf A-Physicochem Eng Aspects, 2007, 300: 204-210
[15]
22 Swimm K, Reichenauer G, Vidi S, et al. Gas pressure dependence of the heat transport in porous solids with pores smaller than10 μm. Int J Thermophys, 2009, 30:1329-1342
[16]
23 Gesser H D, Goswami P C. Aerogels and related porous materials. Chem Rev,1989, 89: 765-788
[17]
37 Kwon Y G, Choi S Y, Kang E S, et al. Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation. J Mater Sci, 2000, 35: 6075-6079
[18]
38 Xie T, He Y L, Hu Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int J Heat Mass Transfer, 2013, 58: 540-552
[19]
39 Chen G. Nanoscale Energy Transport and Conversion. New York: Oxford University Press, 2005
[20]
40 Zhang Z M. Nano/Microscale Heat Transfer. USA: McGraw-Hill Companies, 2007
[21]
41 Kistler S S. The relation between heat conductivity and structure in silica aerogel. J Phys Chem,1935, 39: 79-86
[22]
42 Kaganer M G, Moscona A. Thermal Insulation in Cryogenic Engineering. California: Israel Program for Scientific Translations Jerusalem,1969
[23]
43 Zhao J J, Duan Y Y, Wang X D, et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids, 2012, 358:1287-1297
[24]
44 Lee O J, Lee K H, Jin Yim T, et al. Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids, 2002, 298: 287-292
[25]
49 Zeng S Q, Hunt A, Greif R. Mean free path and apparent thermal conductivity of a gas in a porous medium. J Heat Trans,1995,117: 758-761
[26]
50 Zeng S Q, Hunt A, Greif R. Geometric structure and thermal conductivity of porous medium silica aerogel. J Heat Trans,1995,117:1055-1058
[27]
51 Lu G, Wang X D, Duan Y Y, et al. Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials. J Non-Cryst Solids, 2011, 357: 3822-3829
[28]
52 Wei G, Zhang X, Yu F. Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. Int J Therm Sci, 2009,18:142-149
[29]
53 Bi C, Tang G H, Tao W Q. Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution. J Non-Cryst Solids, 2012, 358: 3124-3128
[30]
54 Fricke J, Lu X, Wang P, et al. Optimization of monolithic silica aerogel insulants. Int J Heat Mass Transfer,1992, 35: 2305-2309
[31]
55 He Y L, Wang Y, Li Q. Lattice Boltzmann Method: Theory and Applications (in Chinese). Beijing: Science Press, 2009 [何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用. 北京: 科学出版社,
[32]
56 Liu J. Micro/Nano Scale Heat Transfer (in Chinese). Beijing: Science Press, 2001 [刘静. 微米/纳米尺度传热学. 北京: 科学出版社,
[33]
62 Zeng T, Liu W. Phonon heat conduction in micro- and nano-core-shell structures with cylindrical and spherical geometries. J Appl Phys, 2003, 93: 4163-4168
[34]
63 Han Y F, Xia X L, Tan H P, et al. Modeling of phonon heat transfer in spherical segment of silica aerogel grains. Phys B-Condens Matter, 2013, 420: 58-63
[35]
64 Tan H P, Xia X L, Liu L H, et al. Numerical calculation of the infrared radiation characteristics and transmission: Computational thermal radiation (in Chinese). Harbin: Harbin Institute of Technology Press, 2006 [谈和平, 夏新林, 刘林华, 等. 红外辐射特性与传输的数值计算: 计算热辐射学. 哈尔滨: 哈尔滨工业大学出版社,
[36]
6 Evans O R. Aerogel insulation for the thermal protection of venus spacecraft. NASA SBIR 2005 Solicitation, 2005
[37]
7 Baetens R, Jelle B P, Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review. Energ Buidings, 2011, 43: 761-769
[38]
65 Siegel R, Howell J R. Thermal Radiation Heat Transfer. New York: Taylor & Francis, 2002
[39]
66 Yu Q Z. Principle of Radiation Heat Transfer (in Chinese). Harbin: Harbin Institute of Technology Press, 2000 [余其铮. 辐射换热原理. 哈尔滨: 哈尔滨工业大学出版社,
[40]
68 Zeng S Q, Hunt A J, Greif R, et al. Approximate formulation for coupled conduction and radiation through a medium with arbitrary optical thickness. J Heat Trans,1995,117: 797-799
[41]
74 Yu H T, Liu D, Duan Y Y, et al. Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures. Int J Heat Mass Transfer, 2014, 70: 478-485
[42]
75 Xie T, He Y L, Tao W Q. Numerical calculation of effective thermal conductivity for complex multiphase materials (in Chinese). J Eng Thermophy, 2012, 33:1197-1200 [谢涛, 何雅玲, 陶文铨. 随机结构多孔介质等效热导率数值计算. 工程热物理学报, 2012, 33:1197-
[43]
76 Howell J R. The Monte Carlo method in radiative heat transfer. J Heat Trans,1998,120: 547-560
[44]
77 Lu X, Wang P, Arduini-Schuster M C, et al. Thermal transport in organic and opacified silica monolithic aerogels. J Non-Cryst Solids,1992,145: 207-210
[45]
78 Hümmer E, Lu X, Rettelbach T, et al. Heat transfer in opacified aerogel powders. J Non-Cryst Solids,1992,145: 211-216
[46]
79 Zhang H X. Synthesis and insulating properties of SiO2 xerogel doped with TiO2 and K2Ti6O13 whiskers materials (in Chinese). Doctoral Dissertation. Harbin: Harbin Institute of Technology, 2008 [张贺新. TiO2和六钛酸钾晶须掺杂SiO2干凝胶的制备及隔热性能研究. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[47]
80 Hayase G, Kugimiya K, Ogawa M, et al. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J Mater Chem A, 2014, 2: 6525-6531
[48]
81 Spagnol S, Lartigue B, Trombe A, et al. Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media. Europhys Lett, 2007, 78: 46005
[49]
82 Spagnol S, Lartigue B, Trombe A, et al. Modeling of thermal conduction in granular silica aerogels. J Sol-Gel Sci Technol, 2008, 48: 40-46
[50]
83 Ma H S, Roberts A P, Prévost J H, et al. Mechanical structure—Property relationship of aerogels. J Non-Cryst Solids, 2000, 277:127-141
[51]
84 Primera J, Hasmy A, Woignier T. Numerical study of pore sizes distribution in gels. J Sol-Gel Sci Technol, 2003, 26: 671-675
[52]
85 Pierce F, Sorensen C M, Chakrabarti A. Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force. Phys Rev E, 2006, 74: 021411
[53]
86 He C, He Y L, Xie T, et al. Predictions of the effective thermal conductivity for aerogel-fiber composite insulation materials using lattice Boltzmann method (in Chinese). J Eng Thermophys, 2013, 34: 742-745 [何超, 何雅玲, 谢涛, 等. 基于格子Boltzmann方法的纤维增强气凝胶复合材料等效热导率求解. 工程热物理学报, 2013, 34: 742-
[54]
101 Nakano A, Bi L, Kalia R K, et al. Structural correlations in porous silica: Molecular dynamics simulation on a parallel computer. Phys Rev Lett,1993, 71: 85-88
[55]
102 Nakano A, Bi L, Kalia R K, et al. Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys Rev B,1994, 49: 9441-9452
[56]
104 Beckers J V L, de Leeuw S W. Molecular dynamics simulation of nanoporous silica. J Non-Cryst Solids, 2000, 261: 87-100
[57]
28 Rhine W, Polli A, Deshpande K. Silica-aerogel composites opacified with La0.7Sr0.3MnO3. NASA Tech Briefs, 2009, MFS-32587-1
[58]
29 Paik J A, Sakamoto J, Jones S, et al. Composite silica aerogels opacified with titania. NASA Tech Briefs, 2009, NPO-44732
[59]
30 Janackovic D, Orlovic A, Skala D, et al. Synthesis of nanostructured mullite from xerogel and aerogel obtained by the non-hydrolytic sol-gel method. Nanostruct Mater,1999,12:147-150
[60]
31 Wei G, Liu Y, Zhang X, et al. Radiative heat transfer study on silica aerogel and its composite insulation materials. J Non-Cryst Solids, 2013, 362: 231-236
[61]
32 Wei G, Liu Y, Zhang X, et al. Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transfer, 2011, 54: 2355-2366
[62]
33 Wei G, Zhang X, Yu F. Thermal conductivity of xonotlite insulation material. Int J Thermophys, 2007, 28:1718-1729
[63]
34 Zhang H, Qiao Y, Zhang X, et al. Structural and thermal study of highly porous nanocomposite SiO2-based aerogels. J Non-Cryst Solids, 2010, 356: 879-883
[64]
35 Zhang H X, He X D, He F. Microstructural characterization and properties of ambient-dried SiO2 matrix aerogel doped with opacified TiO2 powder. J Alloys Compd, 2009, 469: 366-369
[65]
36 Kuhn J, Gleissner T, Arduini-Schuster M C, et al. Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids,1995,186: 291-295
[66]
45 Bi C, Tang G H, Hu Z J. Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity. Int J Heat Mass Transfer, 2014, 73:103-109
[67]
46 Zhao J J, Duan Y Y, Wang X D, et al. An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels. J Non-Cryst Solids, 2012, 358:1303-1312
[68]
47 Dan D, Zhang H, Tao W Q. Effective structure of aerogels and decomposed contributions of its thermal conductivity. Appl Therm Eng, 2017, 72: 2-9
[69]
48 Hemberger F, Weis S, Reichenauer G, et al. Thermal transport properties of functionally graded carbon aerogels. Int J Thermophys, 2009, 30:1357-1371
[70]
57 Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. New York: Oxford University Press,1994
[71]
58 Chen G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. New York: Oxford University Press, 2005
[72]
59 Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys, 2004, 95: 682-693
[73]
60 Chen G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J Heat Trans,1996,118: 539-545
[74]
61 Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer, 2003, 46: 2665-2672
[75]
67 Chandrasekhar S. Radiative Transfer. New York: Dover Publications Inc,1960
[76]
69 Lu X, Arduini-Schuster M C, Kuhn J, et al. Thermal conductivity of monolithic organic aerogels. Science,1992, 255: 971-972
[77]
70 Lu X, Caps R, Fricke J, et al. Correlation between structure and thermal conductivity of organic aerogels. J Non-Cryst Solids,1995,188: 226-234
[78]
71 Lee S C, Cunnington G R. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transfer, 2000,14:121-136
[79]
72 Zhao J J, Duan Y Y, Wang X D, et al. Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures. J Phys D-Appl Phys, 2013, 46: 015304
[80]
73 Wang X D, Sun D, Duan Y Y, et al. Radiative characteristics of opacifier-loaded silica aerogel composites. J Non-Cryst Solids, 2013, 375: 31-39
[81]
87 Wang M, Pan N. Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng R, 2008, 63:1-30
[82]
88 Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley-VCH,1983
[83]
89 Cunnington G R, Lee S C. Radiative properties of fibrous insulations: Theory versus experiment. J Thermophys Heat Transfer,1996,10: 460-466
[84]
90 Rapaport D. The Art of Molecular Dynamics Simulation. Cambridge: Cambridge University Press, 2004
[85]
1 Aegerter M A, Leventis N, Koebel M M. Aerogels Handbook. New York: Springer, 2011
[86]
2 Hrubesh L W. Aerogel applications. J Non-Cryst Solids,1998, 225: 335-342
[87]
3 Fesmire J E. Aerogel insulation systems for space launch applications. Cryogenics, 2006, 46:111-117
[88]
4 Hengeveld D W, Mathison M M, Braun J E, et al. Review of modern spacecraft thermal control technologies. HVAC&R Res, 2010,16:189-220
[89]
5 Jones S. Aerogel: Space exploration applications. J Sol-Gel Sci Technol, 2006, 40: 351-357
[90]
24 Gao Q F, Zhang C R, Feng J. Progress of silica aerogel insulation composites (in Chinese). J Mater Sci Eng, 2009, 27: 302-307 [高庆福, 张长瑞, 冯坚. 氧化硅气凝胶隔热复合材料研究现状. 材料科学与工程学报, 2009, 27: 302-
[91]
25 Deng Z, Wang J, Wu A, et al. High strength SiO2 aerogel insulation. J Non-Cryst Solids,1998, 225:101-104
[92]
26 Feng J, Gao Q F, Feng J Z, et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites (in Chinese). J National Univ Defense Technol, 2010, 32: 40-44 [冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能. 国防科技大学学报, 2010, 32: 40-
[93]
27 Fomitchev D, Trifu R, Gould G. Fiber reinforced silica aerogel composites: Thermal insulation for high-temperature applications. Eng Constr Oper Challenging Envir, 2004: 968-975
[94]
91 Feng XL, Li Z X, Guo Z Y. Molecular dynamics study on thermal conductivity and discussion on some related topics (in Chinese). J Eng Thermophys, 2001, 22:195-198 [冯晓利, 李志信, 过增元. 导热系数的分子动力学模拟研究及相关问题的探讨. 工程热物理学报, 2001, 22:195-
[95]
92 Coquil T, Fang J, Pilon L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transfer, 2011, 54: 4540-4548
[96]
93 Mahajan S S, Subbarayan G, Sammakia B G. Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations. Phys Rev E, 2007, 76: 056701
[97]
94 Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys,1997,106: 6082-6085
[98]
95 Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B, 2002, 65:144306
[99]
96 Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys Rev B, 2000, 61: 2651-2656
[100]
97 Yoon Y G, Car R, Srolovitz D J, et al. Thermal conductivity of crystalline quartz from classical simulations. Phys Rev B, 2004, 70: 012302
[101]
98 Ng T Y, Yeo J J, Liu Z S. A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing. J Non-Cryst Solids, 2012, 358:1350-1355
[102]
99 Bhattacharya S, Kieffer J. Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: From silica nanoparticles to porous gels. J Phys Chem C, 2008,112:1764-1771
[103]
100 Rivas Murillo J S, Bachlechner M E, Campo F A, et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J Non-Cryst Solids, 2010, 356:1325-1331
[104]
103 Pohl P I, Faulon J L, Smith D M. Molecular dynamics computer simulations of silica aerogels. J Non-Cryst Solids,1995,186: 349-355