全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

气凝胶纳米多孔材料传热计算模型研究进展

DOI: 10.1360/N972014-00948, PP. 137-163

Keywords: 气凝胶纳米多孔材料,等效热导率,气相传热,固相传热,辐射传热

Full-Text   Cite this paper   Add to My Lib

Abstract:

对新型气凝胶纳米多孔隔热材料等效热导率计算模型在近年来的发展进行了研究总结,介绍了(1)纳米尺度下气凝胶隔热材料的气相/固相/辐射等不同传热模式的传热特点;(2)气凝胶纳米尺度多孔网络中的气相传热、固相传热以及辐射传热的理论计算、数值预测以及经验关联等不同计算模型的特点及建立方法;(3)气凝胶纳米多孔隔热材料以及气凝胶复合隔热材料的整体等效热导率计算模型的研究进展;(4)以前期开展的研究工作为例,具体说明了气凝胶复合隔热材料从纳米尺度到微米尺度的传热模型的建立过程以及整体等效热导率计算模型的建立方法;(5)对分子动力学方法在气凝胶纳米多孔材料中的应用做了简要介绍.最后指出,对于气凝胶纳米多孔材料,其纳米尺度下的气固接触界面等特殊区域的耦合传热机理研究还不完善,复杂结构的纳米颗粒的固相热导率以及整体热导率计算模型也不够准确.因而采取适用于纳米尺度下的传热计算方法对这些问题进行更细致深入的研究,可以为进一步阐明气凝胶复合隔热材料内部的热量传递机理,建立更准确的气凝胶复合隔热材料传热计算模型,探索不同影响因素对传热性能的影响规律,以及开展气凝胶复合隔热材料的性能预测及优化等方面的研究,提供理论指导帮助.

References

[1]  8 Gurav J L, Jung I K, Park H H, et al. Silica aerogel: Synthesis and applications. J Nanomater, 2010, 2010:1-11
[2]  9 Saboktakin A, Saboktakin M R. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol, 2015, 72: 230-234
[3]  10 Neugebauer A, Chen K, Tang A, et al. Thermal conductivity and characterization of compacted, granular silica aerogel. Energ Buidings, 2014, 79: 47-57
[4]  11 Cuce E, Cuce P M, Wood C J, et al. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew Sust Energ Rev, 2014, 34: 273-299
[5]  12 Yang S M, Tao W Q. Heat Transfer (in Chinese). 4th ed. Beijing: Higher Education Press, 2006 [杨世铭, 陶文铨. 传热学. 第四版. 北京: 高等教育出版社,
[6]  13 Liu Y S. Heat Transfer Mechanism and Thermal Design of Nanoporous Insulating Materials (in Chinese). Beijing: University of Science and Technology, 2007 [刘育松. 纳米孔绝热材料的传热机理及热设计. 北京: 北京科技大学,
[7]  14 Hrubesh L W, Pekala R W. Thermal properties of organic and inorganic aerogels. J Mater Res,1994, 9: 731-738
[8]  15 Good B S. Structure and thermal conductivity of silica aerogels from computer simulations. Hydrogen Cycle-Gener Stor Fuel Cells, 2006, 885: 227-232
[9]  16 Warrier P, Yuan Y, Beck M P, et al. Heat transfer in nanoparticle suspensions: Modeling the thermal conductivity of nanofluids. Amer Instit Chem Eng J, 2010, 56: 3243-3256
[10]  17 Bi C, Tang G H. Effective thermal conductivity of the solid backbone of aerogel. Int J Heat Mass Transfer, 2013, 64: 452-456
[11]  18 Wang J, Kuhn J, Lu X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids,1995,186: 296-300
[12]  19 Zeng S Q, Hunt A, Greif R. Theoretical modeling of carbon content to minimize heat transfer in silica aerogel. J Non-Cryst Solids,1995,186: 271-277
[13]  20 Zhao J J, Duan Y Y, Wang X D, et al. Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J Nanopart Res, 2012,14:1-15
[14]  21 Reichenauer G, Heinemann U, Ebert H P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf A-Physicochem Eng Aspects, 2007, 300: 204-210
[15]  22 Swimm K, Reichenauer G, Vidi S, et al. Gas pressure dependence of the heat transport in porous solids with pores smaller than10 μm. Int J Thermophys, 2009, 30:1329-1342
[16]  23 Gesser H D, Goswami P C. Aerogels and related porous materials. Chem Rev,1989, 89: 765-788
[17]  37 Kwon Y G, Choi S Y, Kang E S, et al. Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation. J Mater Sci, 2000, 35: 6075-6079
[18]  38 Xie T, He Y L, Hu Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int J Heat Mass Transfer, 2013, 58: 540-552
[19]  39 Chen G. Nanoscale Energy Transport and Conversion. New York: Oxford University Press, 2005
[20]  40 Zhang Z M. Nano/Microscale Heat Transfer. USA: McGraw-Hill Companies, 2007
[21]  41 Kistler S S. The relation between heat conductivity and structure in silica aerogel. J Phys Chem,1935, 39: 79-86
[22]  42 Kaganer M G, Moscona A. Thermal Insulation in Cryogenic Engineering. California: Israel Program for Scientific Translations Jerusalem,1969
[23]  43 Zhao J J, Duan Y Y, Wang X D, et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids, 2012, 358:1287-1297
[24]  44 Lee O J, Lee K H, Jin Yim T, et al. Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids, 2002, 298: 287-292
[25]  49 Zeng S Q, Hunt A, Greif R. Mean free path and apparent thermal conductivity of a gas in a porous medium. J Heat Trans,1995,117: 758-761
[26]  50 Zeng S Q, Hunt A, Greif R. Geometric structure and thermal conductivity of porous medium silica aerogel. J Heat Trans,1995,117:1055-1058
[27]  51 Lu G, Wang X D, Duan Y Y, et al. Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials. J Non-Cryst Solids, 2011, 357: 3822-3829
[28]  52 Wei G, Zhang X, Yu F. Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. Int J Therm Sci, 2009,18:142-149
[29]  53 Bi C, Tang G H, Tao W Q. Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution. J Non-Cryst Solids, 2012, 358: 3124-3128
[30]  54 Fricke J, Lu X, Wang P, et al. Optimization of monolithic silica aerogel insulants. Int J Heat Mass Transfer,1992, 35: 2305-2309
[31]  55 He Y L, Wang Y, Li Q. Lattice Boltzmann Method: Theory and Applications (in Chinese). Beijing: Science Press, 2009 [何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用. 北京: 科学出版社,
[32]  56 Liu J. Micro/Nano Scale Heat Transfer (in Chinese). Beijing: Science Press, 2001 [刘静. 微米/纳米尺度传热学. 北京: 科学出版社,
[33]  62 Zeng T, Liu W. Phonon heat conduction in micro- and nano-core-shell structures with cylindrical and spherical geometries. J Appl Phys, 2003, 93: 4163-4168
[34]  63 Han Y F, Xia X L, Tan H P, et al. Modeling of phonon heat transfer in spherical segment of silica aerogel grains. Phys B-Condens Matter, 2013, 420: 58-63
[35]  64 Tan H P, Xia X L, Liu L H, et al. Numerical calculation of the infrared radiation characteristics and transmission: Computational thermal radiation (in Chinese). Harbin: Harbin Institute of Technology Press, 2006 [谈和平, 夏新林, 刘林华, 等. 红外辐射特性与传输的数值计算: 计算热辐射学. 哈尔滨: 哈尔滨工业大学出版社,
[36]  6 Evans O R. Aerogel insulation for the thermal protection of venus spacecraft. NASA SBIR 2005 Solicitation, 2005
[37]  7 Baetens R, Jelle B P, Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review. Energ Buidings, 2011, 43: 761-769
[38]  65 Siegel R, Howell J R. Thermal Radiation Heat Transfer. New York: Taylor & Francis, 2002
[39]  66 Yu Q Z. Principle of Radiation Heat Transfer (in Chinese). Harbin: Harbin Institute of Technology Press, 2000 [余其铮. 辐射换热原理. 哈尔滨: 哈尔滨工业大学出版社,
[40]  68 Zeng S Q, Hunt A J, Greif R, et al. Approximate formulation for coupled conduction and radiation through a medium with arbitrary optical thickness. J Heat Trans,1995,117: 797-799
[41]  74 Yu H T, Liu D, Duan Y Y, et al. Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures. Int J Heat Mass Transfer, 2014, 70: 478-485
[42]  75 Xie T, He Y L, Tao W Q. Numerical calculation of effective thermal conductivity for complex multiphase materials (in Chinese). J Eng Thermophy, 2012, 33:1197-1200 [谢涛, 何雅玲, 陶文铨. 随机结构多孔介质等效热导率数值计算. 工程热物理学报, 2012, 33:1197-
[43]  76 Howell J R. The Monte Carlo method in radiative heat transfer. J Heat Trans,1998,120: 547-560
[44]  77 Lu X, Wang P, Arduini-Schuster M C, et al. Thermal transport in organic and opacified silica monolithic aerogels. J Non-Cryst Solids,1992,145: 207-210
[45]  78 Hümmer E, Lu X, Rettelbach T, et al. Heat transfer in opacified aerogel powders. J Non-Cryst Solids,1992,145: 211-216
[46]  79 Zhang H X. Synthesis and insulating properties of SiO2 xerogel doped with TiO2 and K2Ti6O13 whiskers materials (in Chinese). Doctoral Dissertation. Harbin: Harbin Institute of Technology, 2008 [张贺新. TiO2和六钛酸钾晶须掺杂SiO2干凝胶的制备及隔热性能研究. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[47]  80 Hayase G, Kugimiya K, Ogawa M, et al. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J Mater Chem A, 2014, 2: 6525-6531
[48]  81 Spagnol S, Lartigue B, Trombe A, et al. Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media. Europhys Lett, 2007, 78: 46005
[49]  82 Spagnol S, Lartigue B, Trombe A, et al. Modeling of thermal conduction in granular silica aerogels. J Sol-Gel Sci Technol, 2008, 48: 40-46
[50]  83 Ma H S, Roberts A P, Prévost J H, et al. Mechanical structure—Property relationship of aerogels. J Non-Cryst Solids, 2000, 277:127-141
[51]  84 Primera J, Hasmy A, Woignier T. Numerical study of pore sizes distribution in gels. J Sol-Gel Sci Technol, 2003, 26: 671-675
[52]  85 Pierce F, Sorensen C M, Chakrabarti A. Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force. Phys Rev E, 2006, 74: 021411
[53]  86 He C, He Y L, Xie T, et al. Predictions of the effective thermal conductivity for aerogel-fiber composite insulation materials using lattice Boltzmann method (in Chinese). J Eng Thermophys, 2013, 34: 742-745 [何超, 何雅玲, 谢涛, 等. 基于格子Boltzmann方法的纤维增强气凝胶复合材料等效热导率求解. 工程热物理学报, 2013, 34: 742-
[54]  101 Nakano A, Bi L, Kalia R K, et al. Structural correlations in porous silica: Molecular dynamics simulation on a parallel computer. Phys Rev Lett,1993, 71: 85-88
[55]  102 Nakano A, Bi L, Kalia R K, et al. Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys Rev B,1994, 49: 9441-9452
[56]  104 Beckers J V L, de Leeuw S W. Molecular dynamics simulation of nanoporous silica. J Non-Cryst Solids, 2000, 261: 87-100
[57]  28 Rhine W, Polli A, Deshpande K. Silica-aerogel composites opacified with La0.7Sr0.3MnO3. NASA Tech Briefs, 2009, MFS-32587-1
[58]  29 Paik J A, Sakamoto J, Jones S, et al. Composite silica aerogels opacified with titania. NASA Tech Briefs, 2009, NPO-44732
[59]  30 Janackovic D, Orlovic A, Skala D, et al. Synthesis of nanostructured mullite from xerogel and aerogel obtained by the non-hydrolytic sol-gel method. Nanostruct Mater,1999,12:147-150
[60]  31 Wei G, Liu Y, Zhang X, et al. Radiative heat transfer study on silica aerogel and its composite insulation materials. J Non-Cryst Solids, 2013, 362: 231-236
[61]  32 Wei G, Liu Y, Zhang X, et al. Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transfer, 2011, 54: 2355-2366
[62]  33 Wei G, Zhang X, Yu F. Thermal conductivity of xonotlite insulation material. Int J Thermophys, 2007, 28:1718-1729
[63]  34 Zhang H, Qiao Y, Zhang X, et al. Structural and thermal study of highly porous nanocomposite SiO2-based aerogels. J Non-Cryst Solids, 2010, 356: 879-883
[64]  35 Zhang H X, He X D, He F. Microstructural characterization and properties of ambient-dried SiO2 matrix aerogel doped with opacified TiO2 powder. J Alloys Compd, 2009, 469: 366-369
[65]  36 Kuhn J, Gleissner T, Arduini-Schuster M C, et al. Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids,1995,186: 291-295
[66]  45 Bi C, Tang G H, Hu Z J. Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity. Int J Heat Mass Transfer, 2014, 73:103-109
[67]  46 Zhao J J, Duan Y Y, Wang X D, et al. An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels. J Non-Cryst Solids, 2012, 358:1303-1312
[68]  47 Dan D, Zhang H, Tao W Q. Effective structure of aerogels and decomposed contributions of its thermal conductivity. Appl Therm Eng, 2017, 72: 2-9
[69]  48 Hemberger F, Weis S, Reichenauer G, et al. Thermal transport properties of functionally graded carbon aerogels. Int J Thermophys, 2009, 30:1357-1371
[70]  57 Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. New York: Oxford University Press,1994
[71]  58 Chen G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. New York: Oxford University Press, 2005
[72]  59 Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys, 2004, 95: 682-693
[73]  60 Chen G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J Heat Trans,1996,118: 539-545
[74]  61 Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer, 2003, 46: 2665-2672
[75]  67 Chandrasekhar S. Radiative Transfer. New York: Dover Publications Inc,1960
[76]  69 Lu X, Arduini-Schuster M C, Kuhn J, et al. Thermal conductivity of monolithic organic aerogels. Science,1992, 255: 971-972
[77]  70 Lu X, Caps R, Fricke J, et al. Correlation between structure and thermal conductivity of organic aerogels. J Non-Cryst Solids,1995,188: 226-234
[78]  71 Lee S C, Cunnington G R. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transfer, 2000,14:121-136
[79]  72 Zhao J J, Duan Y Y, Wang X D, et al. Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures. J Phys D-Appl Phys, 2013, 46: 015304
[80]  73 Wang X D, Sun D, Duan Y Y, et al. Radiative characteristics of opacifier-loaded silica aerogel composites. J Non-Cryst Solids, 2013, 375: 31-39
[81]  87 Wang M, Pan N. Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng R, 2008, 63:1-30
[82]  88 Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley-VCH,1983
[83]  89 Cunnington G R, Lee S C. Radiative properties of fibrous insulations: Theory versus experiment. J Thermophys Heat Transfer,1996,10: 460-466
[84]  90 Rapaport D. The Art of Molecular Dynamics Simulation. Cambridge: Cambridge University Press, 2004
[85]  1 Aegerter M A, Leventis N, Koebel M M. Aerogels Handbook. New York: Springer, 2011
[86]  2 Hrubesh L W. Aerogel applications. J Non-Cryst Solids,1998, 225: 335-342
[87]  3 Fesmire J E. Aerogel insulation systems for space launch applications. Cryogenics, 2006, 46:111-117
[88]  4 Hengeveld D W, Mathison M M, Braun J E, et al. Review of modern spacecraft thermal control technologies. HVAC&R Res, 2010,16:189-220
[89]  5 Jones S. Aerogel: Space exploration applications. J Sol-Gel Sci Technol, 2006, 40: 351-357
[90]  24 Gao Q F, Zhang C R, Feng J. Progress of silica aerogel insulation composites (in Chinese). J Mater Sci Eng, 2009, 27: 302-307 [高庆福, 张长瑞, 冯坚. 氧化硅气凝胶隔热复合材料研究现状. 材料科学与工程学报, 2009, 27: 302-
[91]  25 Deng Z, Wang J, Wu A, et al. High strength SiO2 aerogel insulation. J Non-Cryst Solids,1998, 225:101-104
[92]  26 Feng J, Gao Q F, Feng J Z, et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites (in Chinese). J National Univ Defense Technol, 2010, 32: 40-44 [冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能. 国防科技大学学报, 2010, 32: 40-
[93]  27 Fomitchev D, Trifu R, Gould G. Fiber reinforced silica aerogel composites: Thermal insulation for high-temperature applications. Eng Constr Oper Challenging Envir, 2004: 968-975
[94]  91 Feng XL, Li Z X, Guo Z Y. Molecular dynamics study on thermal conductivity and discussion on some related topics (in Chinese). J Eng Thermophys, 2001, 22:195-198 [冯晓利, 李志信, 过增元. 导热系数的分子动力学模拟研究及相关问题的探讨. 工程热物理学报, 2001, 22:195-
[95]  92 Coquil T, Fang J, Pilon L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transfer, 2011, 54: 4540-4548
[96]  93 Mahajan S S, Subbarayan G, Sammakia B G. Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations. Phys Rev E, 2007, 76: 056701
[97]  94 Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys,1997,106: 6082-6085
[98]  95 Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B, 2002, 65:144306
[99]  96 Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys Rev B, 2000, 61: 2651-2656
[100]  97 Yoon Y G, Car R, Srolovitz D J, et al. Thermal conductivity of crystalline quartz from classical simulations. Phys Rev B, 2004, 70: 012302
[101]  98 Ng T Y, Yeo J J, Liu Z S. A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing. J Non-Cryst Solids, 2012, 358:1350-1355
[102]  99 Bhattacharya S, Kieffer J. Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: From silica nanoparticles to porous gels. J Phys Chem C, 2008,112:1764-1771
[103]  100 Rivas Murillo J S, Bachlechner M E, Campo F A, et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J Non-Cryst Solids, 2010, 356:1325-1331
[104]  103 Pohl P I, Faulon J L, Smith D M. Molecular dynamics computer simulations of silica aerogels. J Non-Cryst Solids,1995,186: 349-355

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133