5 Hey A J, Tansley S, Tolle K M. The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond: Microsoft Research, 2009
[2]
7 Letouzé E. Big Data for Development: Challenges and Opportunities. New York: UN Global Pulse, 2012
[3]
10 Dieringer D, Schl?tterer C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes, 2003, 3: 167-169
[4]
17 Hayden E C. Is the $1,000 genome for real. Nature, 2014
[5]
18 Chen R, Mias G I, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 2012, 148: 1293-1307
[6]
19 Chen R, Snyder M. Systems biology: Personalized medicine for the future? Curr Opin Pharmacol, 2012, 12: 623-628
[7]
20 Kolker E, ?zdemir V, Martens L, et al. Toward more transparent and reproducible omics studies through a common metadata checklist and data publications. OMICS, 2014, 18: 10-14
[8]
22 Harvey A, Brand A, Holgate S T, et al. The future of technologies for personalised medicine. N Biotechnol, 2012, 29: 625-633
[9]
23 Frank D N, Amand A L S, Feldman R A, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA, 2007, 104: 13780-13785
[10]
24 Costello E K, Lauber C L, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science, 2009, 326: 1694-1697
[11]
32 Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature, 2012, 488: 621-626
[12]
37 Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376-380
[13]
38 Warren R L, Sutton G G, Jones S J, et al. Assembling millions of short DNA sequences using SSAKE. Bioinformatics, 2007, 23: 500-501
[14]
39 Mavromatis K, Ivanova N, Barry K, et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods, 2007, 4: 495-500
[15]
40 Li M, Xu J, Romero-Gonzalez M, et al. Single cell Raman spectroscopy for cell sorting and imaging. Curr Opin Biotechnol, 2012, 23: 56-63
[16]
41 Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet, 2001, 2: 343-372
[17]
45 Floratos A, Smith K, Ji Z, et al. geWorkbench: an open source platform for integrative genomics. Bioinformatics, 2010, 26: 1779-1780
[18]
46 Ondov B D, Bergman N H, Phillippy A M. Interactive metagenomic visualization in a web browser. BMC Bioinformatics, 2011, 12: 385
[19]
47 Chapman J D, Goodlett D R, Masselon C D. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev, 2013, 33: 452-470
[20]
48 Meyer F, Paarmann D, D'souza M, et al. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 2008, 9: 386
[21]
49 Seshadri R, Kravitz S A, Smarr L, et al. CAMERA: a community resource for metagenomics. PLoS Biol, 2007, 5: e75
[22]
54 Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7: 335-336
[23]
55 Wu H, Volponi J V, Oliver A E, et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci USA, 2011, 108: 3809-3814
[24]
56 Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature, 2011, 472: 90-94
[25]
59 Guo G, Huss M, Tong G Q, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell, 2010, 18: 675-685
[26]
63 Schneider C A, Rasband W S, Eliceiri K W, et al. NIH image to imageJ: 25 years of image analysis. Nat Methods, 2012, 9
[27]
67 Abenstein J P, Tompkins W J. A new data-reduction algorithm for real-time ECG analysis. IEEE Trans Biomed Eng, 1982: 43-48
[28]
68 Loukides G, Gkoulalas-Divanis A, Malin B. Privacy-preserving publication of diagnosis codes for effective biomedical analysis. In: Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), Corfu, 2010
[29]
69 Romero L M. Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol, 2004, 19: 249-255
[30]
1 Engel G L. The need for a new medical model: A challenge for biomedicine. Science, 1977, 196: 129-136
[31]
2 Antony P, Balling R, Vlassis N. From systems biology to systems biomedicine. Curr Opin Biotechnol, 2012, 23: 604-608
[32]
3 Collins F S, Mansoura M K. The human genome project. Cancer, 2001, 91: 221-225
[33]
4 Howe D, Costanzo M, Fey P, et al. Big data: The future of biocuration. Nature, 2008, 455: 47-50
[34]
6 Overpeck J T, Meehl G A, Bony S, et al. Dealing with data: Climate data challenges in the 21st century. Science, 2011, 334: 700-702
[35]
8 LI Y, Chen L. Big biological impacts from big data. Science, 2014, 12: 187-189
[36]
9 Klauer S G, Dingus T A, Neale V L, et al. The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data. Technical Report, Highways; Safety and Human Factors; I83: Accidents and the Human Factor, US Department of Transportation, 2006
[37]
11 Xu J, Wise C, Varma V, et al. Two new ArrayTrack libraries for personalized biomedical research. BMC Bioinformatics, 2010, 11: S6
[38]
12 Kogan S C, Doherty M, Gitschier J. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA se-quences. N Engl J Med, 1987, 317: 985-990
[39]
13 Edgar R, Domrachev M, Lash A E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 2002, 30: 207-210
[40]
14 Bates D W, Saria S, Ohno-Machado L, et al. Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Aff, 2014, 33: 1123-1131
[41]
15 Kodama Y, Shumway M, Leinonen R, The sequence read archive: Explosive growth of sequencing data. Nucleic Acids Res, 2012, 40: D54-D56
[42]
16 Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian individual. Nature, 2008, 456: 60-65
[43]
21 Snyder M. iPOP and its role in participatory medicine. Genome Med, 2014, 6: 6
[44]
25 Frey-Klett P, Burlinson P, Deveau A, et al. Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev, 2011, 75: 583-609
[45]
26 Sievert D M, Ricks P, Edwards J R, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol, 2013, 34: 1-14
[46]
27 Messaoudi M, Violle N, Bisson J F, et al. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2011, 2: 256-261
[47]
28 Human Microbiome Jumpstart Reference Strains Consortium, Nelson K E, Weinstock G M. A catalog of reference genomes from the human microbiome. Science, 2010, 328: 994-999
[48]
29 Turnbaugh P J, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature, 2008, 457: 480-484
[49]
30 Koren O, Goodrich J K, Cullender T C, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 2012, 150: 470-480
[50]
31 Chung H, Pamp S J, Hill J A, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell, 2012, 149: 1578-1593
[51]
33 Van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med, 2013, 368: 407-415
[52]
34 Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464: 59-65
[53]
35 Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type2 diabetes. Nature, 2012, 490: 55-60
[54]
36 Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Geneti, 2008, 24: 133-141
[55]
42 Abraham J. Biomedical microanalysis—putting it to work now in diagnostic pathology. Scan Electron Microsc, 1979: 171-178
[56]
43 Li R, Li Y, Kristiansen K, et al. SOAP: Short oligonucleotide alignment program. Bioinformatics, 2008, 24: 713-714
[57]
44 Adams D J, Berger B, Harismendy O, et al. Genomics in 2011: Challenges and opportunities. Genome Biol, 2011, 12: 137
[58]
50 Desantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol, 2006, 72: 5069-5072
[59]
51 Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res, 2007, 35: 7188-7196
[60]
52 Cole J R, Chai B, Farris R J, et al. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res, 2005, 33: D294-D296
[61]
53 Shah N, Tang H, Doak T G, et al. Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput, 2011, 165-176
[62]
57 Hou Y, Song L, Zhu P, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 2012, 148: 873-885
[63]
58 Zerbino D R, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 2008, 18: 821-829
[64]
60 Peng H, Tang J, Xiao H, et al. Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nat Commun, 2014, 5: 4342
[65]
61 Eliceiri K W, Berthold M R, Goldberg I G, et al. Biological imaging software tools. Nat Methods, 2012, 9: 697-710
[66]
62 Baek H C, Ivan C B, Jennifer A B, et al. OMERO. searcher: Content-based image search for microscope images. Nat Methods, 2012, 9: 633-634
[67]
64 Rajaram S, Pavie B, Wu L F, et al. PhenoRipper: Software for rapidly profiling microscopy images. Nat Methods, 2012, 9: 635-637
[68]
65 Su X, Wang X, Xu J, et al. GPU-meta-storms: Computing the similarities among massive microbial communities using GPU. In: Pro-ceedings of the 7th International Conference on Systems Biology (ISB), Huangshan, 2013, 2013: 69-74
[69]
66 Burgun A, Bodenreider O. Accessing and integrating data and knowledge for biomedical research. Yearb Med Inform, 2008: 91
[70]
70 Boinski S, Cropp S J. Disparate data sets resolve squirrel monkey (Saimiri) taxonomy: Implications for behavioral ecology and biomedical usage. Int J Primatol, 1999, 20: 237-256