全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

新型航天器发展对力学学科的挑战

DOI: 10.1360/N972014-01382, PP. 1085-1094

Keywords: 新型航天器,工程难题,力学挑战

Full-Text   Cite this paper   Add to My Lib

Abstract:

航天工程研制与力学学科发展关系紧密,相互促进.分析新型航天器研制所面临的工程难题及其对力学学科提出的新挑战,并对这些力学问题加以研究与工程转化,对促进我国航天科技的快速发展具有重要作用.本文针对重型运载火箭、大型空间飞行器、可重复使用运载器及临近空间高超声速飞行器4类典型新型航天器,在分析其主要技术特点和工程研制难题的基础上,总结归纳出对力学学科问题的挑战,提出了当前及未来在力学领域内需要重点关注的热点问题及相关建议,以促进新型航天器与力学基础学科的共同发展.

References

[1]  1 Long L H, Wang X J, Rong Y. The forecast of expendable launch vehicle in China (in Chinese). Sci China Ser E-Tech Sci, 2009, 39: 460-463 [龙乐豪, 王小军, 容易. 我国一次性运载火箭的发展展望. 中国科学E辑: 技术科学, 2009, 39: 460-
[2]  2 Long L H, Liu W, He W. Developing heavy launch vehicle to accelerate the progress of space industry (in Chinese). Space Int, 2011, 8: 1-8 [龙乐豪, 刘伟, 何巍. 研制重型火箭支撑航天发展. 国际太空, 2011, 8: 1-
[3]  3 He W, Liu W, Long L H. Heavy launch vehicle and its application (in Chinese). Missiles Space Vehicles, 2011, 1: 1-5 [何巍, 刘伟, 龙乐豪. 重型运载火箭及其应用探讨. 导弹与航天运载技术, 2011, 1: 1-
[4]  4 Mankins J C. The strategic importance of space solar power in future exploration programs. 5th International Energy Conversion Engineering Conference and Exhibit (IECEC), 2007. doi: 10.2514/6.2007-4720
[5]  5 Zhou Z C, Qu G J. System Design and Dynamics Analysis of Communication Satellites (in Chinese). Beijing: China Science and Technology Press, 2012. 12 [周志成, 曲广吉. 通信卫星总体设计和动力学分析. 北京: 中国科学技术出版社, 2012.
[6]  6 Li T J, Zhang Y, Li T. Deployment dynamic analysis and control of hoop truss deployable antenna (in Chinese). Acta Aeronaut Stronaut Sin, 2009, 30: 444-449 [李团结, 张炎, 李涛. 周边桁架可展开天线展开过程动力学分析及控制. 航空学报, 2009, 30: 444-
[7]  14 Ma X R, Yu D Y. Research evolution on the satellite-rocket mechanical environment analysis & test technology (in Chinese). J Astronaut, 2006, 27: 323-331 [马兴瑞, 于登云. 星箭力学环境分析与试验技术研究进展. 宇航学报, 2006, 27: 323-
[8]  15 Yu D Y, Ma X R. Classification system research on spacecraft dynamics (in Chinese). In: Progress in Solid Mechanics. Harbin: Harbin Institute of Technology Press, 2010. 5 [于登云, 马兴瑞. 航天器动力学问题分类体系研究. 见: 固体力学进展. 哈尔滨: 哈尔滨工业大学出版社, 2010.
[9]  16 Yang Y Z, Li S N, Yang J L. A review on hypersoinc vehicles and key technologies (in Chinese). Adv Mech, 2007, 37: 537-550 [杨亚政, 李松年, 杨嘉陵. 高超音速飞行器及其关键技术简论. 力学进展, 2007, 37: 537-
[10]  17 Cui E J. Research statutes, development trends and key technical problems of near space flying vehicles (in Chinese). Adv Mech, 2009, 39: 658-673 [崔尔杰. 近空间飞行器研究发展现状及关键技术问题. 力学进展, 2009, 39: 658-
[11]  18 Carlos A, Boeing C, Canoga P. The development of the X-37 re-entry vehicle. AIAA 2004-4186, 2004
[12]  19 White J T. To the limits and beyond: X-aircraft FRom the XS-1 to the X-20A. AIAA 2005-4521, 2005
[13]  20 Whitmore S A, Moes T R. Base-drag-reduction experiments on the X-33 linear aerospike SR-71 flight program. J Spacecr Rockets, 2000, 37: 20
[14]  21 Miao W B, Luo X G, Cheng X L, et al. Surface recombination effects on aerodynamic loads of hypersonic vehicles (in Chinese). Acta Aerodyn Sin, 2014, 32: 235-239 [苗文博, 罗晓光, 程晓丽, 等. 壁面催化对高超声速飞行器气动特性影响. 空气动力学报, 2014, 32: 235-
[15]  22 Hao J A, Jiang C W, Gao Z X, et al. Aerodynamic engineering prediction methods for winged reentry vehicles (in Chinese). Chin Space Sci Technol, 2014, 3: 38-45 [郝佳傲, 蒋崇文, 高振勋, 等. 有翼再入飞行器的超/高超声速气动力工程方法. 中国空间科学技术, 2014, 3: 38-
[16]  23 Smith K A, Soares C E, Mikatarian R, et al. Space shuttle thermal protection system repair flight experiment induced contamination impacts. AIAA 2006-685, 2006
[17]  24 Zhu L G, Wang Y F, Zhuang F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft (in Chinese). J Astronaut, 2007, 28: 1550-1553 [祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测分析. 宇航学报, 2007, 28: 1550-
[18]  25 Mease K D, Chen D T. A three-dimensional predictive entry guidance approach. AIAA 2000-3959, 2000
[19]  26 Mengali G, Giulietti F. Unified algebraic approach to approximation of lateral-directional modes and departure criteria. J Guid Control Dyn, 2004, 27: 724-728
[20]  27 Ananthkrishnan N, Unnikrishnan S. Literal approximation to aircraft dynamic modes. J Guid Control Dyn, 2001, 24: 1196-1203
[21]  28 Freeman D C, Jr Reubush D E, McClinton C R, et al. The NASA Hyper-X Program. NASA TM-1997-207243, 1997
[22]  29 Morelli E A, Derry S D, Smith M S. Aerodynamic parameter estimation for the X-43A (Hyper-X) from flight data. AIAA 2005-5921, 2005
[23]  30 Marshall L A, Bahm C, Corpening G P, et al. Overview with results and lessons learned of the X-43A Mach 10 flight. AIAA 2005-3336, 2005
[24]  31 Ma H D. Methodology of aerodynamic research for hypersonic technical project “Hyper-X” (in Chinese). Mech Eng, 2014, 36: 261-268 [马汉东. 高超声速技术项目“Hyper-X“气动研究方法学. 力学与实践, 2014, 36: 261-268 ]
[25]  32 Berry S, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A. AIAA J, 2010, 47: 922-934
[26]  33 Hank J M. Air force research laboratory hypersonic propulsion research programs. AIAA 2007-5371, 2007
[27]  34 Candler G, Johnson H, Alba C, et al. Analysis of modal growth on the leeward centerplane of the X-51 vehicle. AFRL-RB-WP-TM-2010-3001, 2010
[28]  35 Li J L. Development Survey of Near Space Hypersonic Vehicles (in Chinese). Beijing: China Astronautic Publishing House, 2012 [李建林. 临近空间高超声速飞行器发展研究. 北京: 中国宇航出版社,
[29]  36 Walker S H, Sherk C J, Shell D, et al. The DARPA/AF Falcon Program: The hypersonic technology vehicle #2 (HTV-2) flight demonstration phase. AIAA 2008-2539, 2008
[30]  37 Walker S H, Rodgers F. Falcon hypersonic technology overview. AIAA 2005-3253, 2005
[31]  38 Nie W S, Luo S B, Feng S J, et al. Analysis of key technologies and development trend of near space vehicle (in Chinese). J Nat Univ Defense Technol, 2011, 34: 107-113 [聂万胜, 罗世彬, 丰松江, 等. 近空间飞行器关键技术及其发展趋势分析. 国防科技大学学报, 2011, 34: 107-
[32]  39 Li S B, Luo S B, Huang W, et al. Investigation on aerodynamic performance for a novel wide-ranged hypersonic vehicle (in Chinese). J Solid Rocket Technol, 2012, 35: 588-592 [李世斌, 罗世彬, 黄伟等. 新型宽速域超声速飞行器气动特性研究. 固体火箭技术, 2012, 35: 588-
[33]  40 Ye Y D. Study on aerodynamic characteristics and design optimization for high near space vehicle (in Chinese). Adv Mech, 2009, 39: 683-694 [叶友达. 近空间高速飞行器气动特性研究与布局设计优化. 力学进展, 2009, 39: 683-
[34]  41 Lu Q, Jiang G Q, Luo X G, et al. Lightweight and non-ablation new TPS for X-37B aerospace vehicle (in Chinese). Modern Deffense Technol, 2012, 40: 16-20 [鲁芹, 姜贵庆, 罗晓光, 等. X-37B空天飞行器轻质非烧蚀热防护新技术. 现代防御技术, 2012, 40: 16-
[35]  42 Yu G, Fan X J. Supersonic combustion and hypersonic propulsion (in Chinese). Adv Mech, 2013, 43: 449-471 [俞刚, 范学军. 超声速燃烧与高超声速推进. 力学进展, 2013, 43: 449-
[36]  43 Cui H, Li R Z. Development status of composite material for solid booster of launch system (in Chinese). Aerosp Mater Technol, 2014, 3: 1-5 [崔红, 李瑞珍. 运载火箭固体发动机复合材料技术发展现状. 宇航材料工艺, 2014, 3: 1-
[37]  44 Zhou Z L, Zhang C M. Mechanical analysis of composite instrument cabin for carrier rocket (in Chinese). Fiber Reinf Plast Compos, 2002, 6: 12-14 [周祝林, 张长明. 运载火箭复合材料仪器舱力学分析. 玻璃钢/复合材料, 2002, 6: 12-
[38]  7 Hu H Y, Tian Q, Zhang W, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes (in Chinese). Adv Mech, 2013, 43: 390-414 [胡海岩, 田强, 张伟, 等. 大型网状式可展开空间结构的非线性动力学与控制. 力学进展, 2013, 43: 390-
[39]  8 Zhao M L, Guan F L. Deployment dynamics analysis of circle truss deployable antenna with friction (in Chinese). Chin J Space Sci, 2006, 26: 220-226 [赵孟良, 关富玲. 考虑摩擦的周边桁架式可展开天线动力学分析. 空间科学学报, 2006, 26: 220-
[40]  9 Miller A J, Gary G L. Nonlinear spacecraft dynamics with a flexible appendage damping, and moving internal submasses. J Guid Control Dyn, 2001, 24: 605-615
[41]  10 Lü J, Li J F, Wang T S. Nonlinear dynamics analysis of a liquid filled spacecraft with elastic appendages (in Chinese). J Tsinghua Univ, 2007, 47: 1366-1369 [吕竞, 李俊峰, 王天舒. 充液挠性航天器俯仰运动非线性动力学分析. 清华大学学报, 2007, 47: 1366-
[42]  11 Mather J C. The James Webb Space Telescope and Future IR Space Telescopes. Space 2004 Conference and Exhibit, 2004
[43]  12 Johnston J C, Thorton E A. Thermally induced attitude dynamics of a spacecraft with a flexible appendage. J Guid Control Dyn, 1998, 21: 581-587
[44]  13 Li Z J, Ma X R, Han Z Y. Semi-empirical method for force specification in force limited vibration test (in Chinese). Chin Space Sci Technol, 2011, 31: 1-7 [李正举, 马兴瑞, 韩增尧. 航天器振动试验力限条件设计半试验方法. 中国空间科学技术, 2011, 31: 1-

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133