1 Ogasawara M, Di Lauro R, Satoh N. Ascidian homologs of mammalian thyroid peroxidase genes are expressed in the thyroid-equivalent region of the endostyle. J Exp Zool, 1999, 285: 158-169
[2]
2 Swalla B J, Smith A B. Deciphering deuterostome phylogeny: Molecular, morphological palaeontological perspectives. Philos Trans R Soc Lond B Biol Sci, 2008, 363: 1557-1568
[3]
3 Satoh N. An aboral-dorsalization hypothesis for chordate origin. Genesis, 2008, 46: 614-622
[4]
4 Satoh N. An advanced filter-feeder hypothesis for urochordate evolutio. Zool Sci, 2009, 26: 97-111
[5]
5 Kowalevsky A. Entwicklungsgeschichte der einfachen Ascidien. Mem l’Acad St Petersbourg Ser, 1866, 7: 11-19
[6]
6 Kowalevsky A. Entwicklungsgeschichte des Amphioxus lanceolatus. Mem l’Acad St Petersbourg Ser, 1866, 7: 1-17
[7]
7 Zhang S C, Yuan J Y, Li H Y. Amphioxus, model for the study of vertebrate origin and evalution (in Chinese). Chin Bull Life Sci, 2001,13: 214-218 [张士璀, 袁金铎, 李红岩. 文昌鱼——研究脊椎动物起源和进化的模式动物. 生命科学, 2001, 13: 214-
[8]
8 Wang Y Q, Fang S H. Taxonomic and molecular phylogenetic studies of amphioxus: a review and prospective evaluation (in Chinese). Zool Res, 2005, 26: 666-672[王义权, 方少华. 文昌鱼分类学研究及展望. 动物学研究, 2005, 26: 666-
[9]
9 Wang L, Su H Y, Wang C L. Ascidian or amphioxus? Who is the closest living relative of vertebrates (in Chinese). Trans Oceanol Limnol,2010, (1): 23-30 [王磊, 宿红艳, 王昌留. 海鞘与文昌鱼谁更接近脊椎动物的始祖. 海洋湖沼通报, 2010, (1): 23-
[10]
10 Dehal P, Satou Y, Campbell R K, et al. The draft genome of Ciona intestinalis: Insights into chordate vertebrate origins. Science, 2002,298: 2157-2167
[11]
11 Small K S, Brudno M, Hill M M, et al. A haplome alignment reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol, 2007, 8: R41
[12]
12 Denoeud F, Henriet S, Mungpakdee S, et al. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science, 2010, 330: 1381-1385
[13]
13 Putnam N H, Butts T, Ferrier D E, et al. The amphioxus genome the evolution of the chordate karyotype. Nature, 2008, 453: 1064-1071
[14]
14 Bourlat S J, Juliusdottir T, Lowe C J, et al. Deuterostome phylogeny reveals monophyletic chordates the new phylum Xenoturbellida. Nature, 2006, 444: 85-88
[15]
15 Delsuc F, Brinkmann H, Chourrout D, et al. Tunicates not cephalochordates are the closest living relatives of vertebrates. Nature, 2006,439: 965-968
[16]
16 Holland L Z, Albalat R, Azumi K, et al. The amphioxus genome illuminates vertebrate origins cephalochordate biology. Genome Res,2008, 18: 1100-1111
[17]
17 Nakamura M J, Terai J, Okubo R, et al. Three-dimensional anatomy of the Ciona intestinalis tailbud embryo at single-cell resolution. Dev Biol, 2012, 372: 274-284
[18]
18 Satoh N. Developmental Biology of Ascidians. Cambridge England, New York: Cambridge University Press, 1994
[19]
19 Conklin E G. The organization cell-lineage of the ascidian egg. J Acad Nat Sci (Philadelphia), 1905, 13: 1-119
[20]
20 Nishida H. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol, 1987, 121: 526-541
[21]
21 Conklin E G. Mosaic development in ascidian eggs. J Exp Zool, 1905, 2: 145-223
[22]
22 Gorsky G, Youngbluth M J, Deibel D. Response of Marine Ecosystems to Global Change: Ecological Impact of Appendicularians. Paris: Contemporary Publishing International, 2005
[23]
23 Joly J S, Kano S, Matsuoka T, et al. Culture of Ciona intestinalis in closed systems. Dev Dyn, 2007, 236: 1832-1840
[24]
24 Deschet K, Nakatani Y, Smith W C. Generation of Ci-Brachyury-GFP stable transgenic lines in the ascidian Ciona savignyi. Genesis,2003, 35: 248-259
[25]
25 Sasakura Y, Awazu S, Chiba S, et al. Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci USA, 2003, 100: 7726-7730
[26]
26 Sasakura Y, Oogai Y, Matsuoka T, et al. Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis. Genome Biol, 2007, 8(Suppl 1): S3
[27]
27 Hozumi A, Mita K, Miskey C, et al. Germline transgenesis of the chordate Ciona intestinalis with hyperactive variants of sleeping beauty transposable element. Dev Dyn, 2013, 242: 30-43
[28]
28 Veeman M T, Chiba S, Smith W C. Ciona genetics. Methods Mol Biol, 2011, 770: 401-422
[29]
29 Sardet C, McDougall A, Yasuo H, et al. Embryological methods in ascidians: The Villefranche-sur-Mer protocols. Methods Mol Biol,2011, 770: 365-400
[30]
33 Imai K S, Levine M, Satoh N, et al. Regulatory blueprint for a chordate embryo. Science, 2006, 312: 1183-1187
[31]
34 Imai K S, Stolfi A, Levine M, et al. Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development, 2009, 136: 285-293
[32]
35 Endo T, Ueno K, Yonezawa K, et al. CIPRO 25: Ciona intestinalis protein database, a unique integrated repository of large-scale omics data, bioinformatic analyses curated annotation, with user rating reviewing functionality. Nucleic Acids Res, 2011, 39: D807-D814
[33]
36 Tassy O, Dauga D, Daian F, et al. The ANISEED database: Digital representation, formalization, elucidation of a chordate developmental program. Genome Res, 2010, 20: 1459-1468
[34]
37 Danks G, Campsteijn C, Parida M, et al. OikoBase: A genomics developmental transcriptomics resource for the urochordate Oikopleura dioica. Nucleic Acids Res, 2013, 41: D845-D853
[35]
38 Kawai N, Ochiai H, Sakuma T, et al. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Dev Growth Differ, 2012, 54: 535-545
[36]
39 Treen N, Yoshida K, Sakuma T, et al. Tissue-specific ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development, 2014, 141: 481-487
[37]
40 Yoshida K, Treen N, Hozumi A S, et al. Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases. Genesis, 2014, 52:431-439
[38]
41 Sasaki H, Yoshida K, Hozumi A, et al. CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev Growth Differ,2014, 56: 499-510
[39]
42 Stolfi A, Gandhi S, Salek F, et al. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development, 2014, 141:4115-4120
[40]
43 Iitsuka T, Mita K, Hozumi A, et al. Transposon-mediated targeted specific knockdown of maternally expressed transcripts in the ascidian Ciona intestinalis. Sci Rep, 2014, 4: 5050
[41]
44 Lemaire P. Evolutionary crossroads in developmental biology: The tunicates. Development, 2011, 138: 2143-2152
[42]
45 Lemaire P. Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions evolutionary plasticity in ascidians. Dev Biol, 2009, 332: 48-60
[43]
46 Corbo J C, Di Gregorio A, Levine M. The ascidian as a model organism in developmental evolutionary biology. Cell, 2001, 106: 535-538
[44]
47 Munro E, Robin F, Lemaire P. Cellular morphogenesis in ascidians: How to shape a simple tadpole. Curr Opin Genet Dev, 2006, 16:399-405
[45]
48 Shi W, Levine M, Davidson B. Unraveling genomic regulatory networks in the simple chordate, Ciona intestinalis. Genome Res, 2005,15: 1668-1674
[46]
49 Satoh N, Tagawa K, Takahashi H. How was the notochord born? Evol Dev, 2012, 14: 56-75
[47]
50 Jiang D, Smith W C. Ascidian notochord morphogenesis. Dev Dyn, 2007, 236: 1748-1757
[48]
51 Stemple D L. Structure function of the notochord: An essential organ for chordate development. Development, 2005, 132: 2503-2512
[49]
52 Nakatani Y, Nishida H. Induction of notochord during ascidian embryogenesis. Dev Biol, 1994, 166: 289-299
[50]
53 Nakatani Y, Yasuo H, Satoh N, et al. Basic fibroblast growth factor induces notochord formation the expression of As-T, a Brachyury homolog, during ascidian embryogenesis. Development, 1996, 122: 2023-2031
[51]
54 Showell C, Binder O, Conlon F L. T-box genes in early embryogenesis. Dev Dyn, 2004, 229: 201-218
[52]
55 Corbo J C, Levine M, Zeller R W. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development, 1997, 124: 589-602
[53]
56 Yasuo H, Satoh N. Conservation of the developmental role of Brachyury in notochord formation in a urochordate, the ascidian Balocynthia roretzi. Dev Biol, 1998, 200: 158-170
[54]
57 Chiba S, Jiang D, Satoh N, et al. Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development, 2009, 136:35-39
[55]
58 Takahashi H, Hotta K, Erives A, et al. Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev, 1999, 13:1519-1523
[56]
59 Jose-Edwards D S, Oda-Ishii I, Nibu Y, et al. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development. Development, 2013, 140: 2422-2433
[57]
60 Hotta K, Takahashi H, Asakura T, et al. Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. Dev Biol, 2000, 224: 69-80
[58]
61 Hotta K, Takahashi H, Satoh N, et al. Brachyury-downstream gene sets in a chordate, Ciona intestinalis: Integrating notochord specification, morphogenesis chordate evolution. Evol Dev, 2008, 10: 37-51
[59]
62 Kobayashi K, Sawada K, Yamamoto H, et al. Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme notochord induction in ascidian embryos. Development, 2003, 130: 5179-5190
[60]
63 Picco V, Hudson C, Yasuo H. Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development, 2007, 134: 1491-1497
[61]
64 Cloney. Development of the ascidian notochord. Acta Embryol Morphol Exp, 1964, 7: 111-130
[62]
65 Miyamoto D M, Crowther R J. Formation of the notochord in living ascidian embryos. J Embryol Exp Morphol, 1985, 86: 1-17
[63]
66 Munro E M, Odell G M. Polarized basolateral cell motility underlies invagination convergent extension of the ascidian notochord. Development,2002, 129: 13-24
[64]
67 Dong B, Horie T, Denker E, et al. Tube formation by complex cellular processes in Ciona intestinalis notochord. Dev Biol, 2009, 330:237-249
[65]
68 Lenard A, Ellertsdottir E, Herwig L, et al. In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell, 2013, 25: 492-506
[66]
69 Alvers A L, Ryan S, Scherz P J, et al. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. Development, 2014, 141: 1110-1119
[67]
70 Keller R, Davidson L, Edlund A, et al. Mechanisms of convergence extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci,2000, 355: 897-922
[68]
71 Shi W, Peyrot S M, Munro E, et al. FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development,2009, 136: 23-28
[69]
72 Niwano T, Takatori N, Kumano G, et al. Wnt5 is required for notochord cell intercalation in the ascidian Halocynthia roretzi. Biol Cell,2009, 101: 645-659
[70]
73 Jiang D, Munro E M, Smith W C. Ascidian prickle regulates both mediolateral anterior-posterior cell polarity of notochord cells. Curr Biol, 2005, 15: 79-85
[71]
74 Veeman M T, Nakatani Y, Hendrickson C, et al. Chongmague reveals an essential role for laminin-mediated boundary formation in chordate convergence extension movements. Development, 2008, 135: 33-41
[72]
75 Munro E M, Odell G. Morphogenetic pattern formation during ascidian notochord formation is regulative highly robust. Development,2002, 129: 1-12
[73]
76 Dong B, Deng W, Jiang D. Distinct cytoskeleton populations extensive crosstalk control Ciona notochord tubulogenesis. Development,2011, 138: 1631-1641
[74]
77 Heisenberg C P, Bellaiche Y. Forces in tissue morphogenesis patterning. Cell, 2013, 153: 948-962
[75]
78 Rauzi M, Lenne P F. Cortical forces in cell shape changes tissue morphogenesis. Curr Top Dev Biol, 2011, 95: 93-144
[76]
79 Lecuit T, Lenne P F, Munro E. Force generation, transmission, integration during cell tissue morphogenesis. Annu Rev Cell Dev Biol,2011, 27: 157-184
[77]
80 Sehring I M, Dong B, Denker E, et al. An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol, 2014,12: e1001781
[78]
81 Gunning P W, Schevzov G, Kee A J, et al. Tropomyosin isoforms: Divining rods for actin cytoskeleton function. Trends Cell Biol, 2005,15: 333-341
[79]
82 Denker E, Bocina I, Jiang D. Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development, 2013, 140: 2985-2996
[80]
83 Tsarouhas V, Senti K A, Jayaram S A, et al. Sequential pulses of apical epithelial secretion endocytosis drive airway maturation in Drosophila. Dev Cell, 2007, 13: 214-225
[81]
102 Yan S. Contribution of late professor T. C. Tung to the experimental embryology of Amphioxus. In memory of the 20th anniversary of Professor T. C. Tung’s death. Dev Growth Differ, 1999, 41: 503-522
[82]
103 Ke C H, Feng D Q. Researches on larval settlement and metamorphosis of marine benthos (in Chinese). J Xiamen Univ (Nat Sci), 2006,45: 77-82 [柯才焕, 冯丹青. 海洋底栖动物浮游幼体附着和变态的研究. 厦门大学学报(自然科学版), 2006, 45: 77-
[83]
104 Zhang J. Preliminary study on the ingestion rate and metabolism of three species of sea squirts (in Chinese). Master Thesis. Qingdao: China Ocean University. 1999 [张继红. 中国北方沿海三种常见海鞘摄食和代谢的初步研究. 硕士学位论文. 青岛: 中国海洋大学,
[84]
105 He S S, Cheng Y X. The drug value and progress in studies of ascidian (in Chinese). J Shanghai Fisheries Univ, 2002, 11: 167-170 [贺诗 水, 成永旭. 海鞘的药用价值及其研究进展. 上海水产大学学报, 2002, 11: 167-
[85]
106 Fang Y Q, Lin J H, Huang W Q. The relationship between nerveux and gonad development in Styela plicata (in Chinese). Chin Sci Bull,1997, 42: 653-656 [方永强, 林加涵, 黄威权. 皱瘤海鞘神经复合体与性腺发育相关性研究. 科学通报, 1997, 42: 653-
[86]
118 Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun, 2014, 5: 3657
[87]
119 Gao Y, Gao Q, Zhang H, et al. Draft sequencing analysis of the genome of pufferfish Takifugu flavidus. DNA Res, 2014, doi:10.1093/dnares/dsu025
[88]
120 Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull 2012,57: 1751-1760 [桂建芳, 朱作言. 水产动物重要经济性状的分子基础及其遗传改良. 科学通报, 2012, 57: 1719-
[89]
30 Negishi T, McDougall A, Yasuo H. Practical tips for imaging ascidian embryos. Dev Growth Differ, 2013, 55: 446-453
[90]
31 Hotta K, Mitsuhara K, Takahashi H, et al. A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn, 2007, 236: 1790-1805
[91]
32 Satou Y, Kawashima T, Shoguchi E, et al. An integrated database of the ascidian, Ciona intestinalis: Towards functional genomics. Zool Sci, 2005, 22: 837-843
[92]
84 Dong B, Kakihara K, Otani T, et al. Rab9 retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Nat Commun, 2013, 4: 1358
[93]
85 Dong B, Hannezo E, Hayashi S. Balance between apical membrane growth luminal matrix resistance determines epithelial tubule shape. Cell Rep, 2014, 7: 941-950
[94]
86 Herwig L, Blum Y, Krudewig A, et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol, 2011, 21:1942-1948
[95]
87 Iruela-Arispe M L, Beitel G J. Tubulogenesis. Development, 2013, 140: 2851-2855
[96]
88 Sherrard K, Robin F, Lemaire P, et al. Sequential activation of apical basolateral contractility drives ascidian endoderm invagination. Curr Biol, 2010, 20: 1499-1510
[97]
89 Cooley J, Whitaker S, Sweeney S, et al. Cytoskeletal polarity mediates localized induction of the heart progenitor lineage. Nat Cell Biol,2011, 13: 952-957
[98]
90 Abitua P B, Wagner E, Navarrete I A, et al. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature, 2012, 492:104-107
[99]
91 Horie T, Shinki R, Ogura Y, et al. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature,2011, 469: 525-528
[100]
92 Nishide K, Mugitani M, Kumano G, et al. Neurula rotation determines left-right asymmetry in ascidian tadpole larvae. Development,2012, 139: 1467-1475
[101]
93 Imai K S, Daido Y, Kusakabe T G, et al. Cis-acting transcriptional repression establishes a sharp boundary in chordate embryos. Science,2012, 337: 964-967
[102]
94 Davidson B. Ciona intestinalis as a model for cardiac development. Semin Cell Dev Biol, 2007, 18: 16-26
[103]
95 Sasakura Y, Mita K, Ogura Y, et al. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis metamorphosis. Dev Growth Differ, 2012, 54: 420-437
[104]
96 Ettensohn C A. Encoding anatomy: Developmental gene regulatory networks morphogenesis. Genesis, 2013, 51:383-409
[105]
97 Tung T C. L’organisation de l’oeuf feconde d’Ascidiella scabra au debut de la segmentation. Compt Rend Soc Biol, 1934, 115:1375-1378
[106]
98 Tung T C. Recherches sur les potentialites des blastomeres chez Ascidiella scabra. Arch Anat Microbiol, 1934, 30: 381-410
[107]
99 Tung T C, Ku S H, Tung Y F Y. The development of the ascidian egg centrifuged before fertilization. Biol Bull-US, 1941, 80: 153-168
[108]
100 Tung T, Wu S, Li K, et al. Cell-differentiation in ascidian studied by nuclear transplantation. Sci Sin, 1977, 20: 222-233
[109]
101 Nishida H, Sawada K. Macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature,2001, 409: 724-729
[110]
107 Ying H, Ke C H, Feng D Q, et al. Observations on the morphology of embryonic larval development in Styela canopus Savigny. Acta Oceanol Sin, 2003, 22: 621-628
[111]
108 Lü H, Tan Y K. Studiy on the embryogenesis of Ciona intestinalis (in Chinese). J Dalian Ocean Univ, 2006, 21: 65-68 [吕豪, 檀永凯. 玻璃海鞘胚胎发育的研究. 大连海洋大学学报, 2006, 21: 65-
[112]
109 Ma H M, Zhang J L, Yao Z L, et al. The new record of ascidian Ciona savignyi in China (in Chinese). Acta Hydrobiol Sin, 2010, 34:
110 Liu L P, Xiang J H, Dong B, et al. Ciona intestinalis as an emerging model organism: Its regeneration under controlled conditions methodology for egg dechorionation. J Zhejiang Univ Sci B, 2006, 7: 467-474
[115]
111 Zhang G, Fang X, Guo X, et al. The oyster genome reveals stress adaptation complexity of shell formation. Nature, 2012, 490: 49-54
[116]
112 Takeuchi T, Kawashima T, Koyanagi R, et al. Draft genome of the pearl oyster Pinctada fucata: A platform for understanding bivalve biology. DNA Res, 2012, 19: 117-130
[117]
113 Shinzato C, Shoguchi E, Kawashima T, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature, 2011, 476: 320-323
[118]
114 Shoguchi E, Shinzato C, Kawashima T, et al. Draft assembly of the symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol, 2013, 23: 1399-1408
[119]
115 Ryan J F, Pang K, Schnitzler C E, et al. The genome of the ctenophore Mnemiopsis leidyi its implications for cell type evolution. Science,2013, 342: 1242592
[120]
116 Moroz L L, Kocot K M, Citarella M R, et al. The ctenophore genome the evolutionary origins of neural systems. Nature, 2014, 510:109-114
[121]
117 Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution adaptation to a benthic lifestyle. Nat Genetics, 2014, 46: 253-260