全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

强迫性用药行为的神经生物学机制研究进展

DOI: 10.1360/N972014-01410, PP. 1160-1166

Keywords: 强迫性用药行为,背侧纹状体,前额叶皮层,D2多巴胺受体,五羟色胺

Full-Text   Cite this paper   Add to My Lib

Abstract:

行为的核心特征是强迫性用药,即成瘾者对药物的寻求和摄取失控.药物成瘾行为的形成过程是由最初的目标导向性模式(A-O)向习惯化模式(S-R)的过渡,并最终发展为强迫性觅药和用药.成瘾行为形成过程的演变伴随腹侧纹状体(VS)到背侧纹状体(DS)多巴胺(DA)系统控制的转移;在DS中,中外侧纹状体(MLS)与长时程训练的觅药过程有关,而背外侧纹状体(DLS)则选择性参与强迫性觅药的调控.最新的研究还发现,长期用药导致的前额叶(PFC)功能的损害与强迫性行为的产生直接相关,且PFC不同亚区到纹状体的谷氨酸能投射对于觅药行为的调控存在竞争关系.此外,除了DA系统,五羟色胺(5-HT)系统对强迫性用药行为的形成也具有重要作用.本文将重点讨论成瘾相关的脑环路在强迫性觅药或用药过程中发挥的调控作用及其功能转换的潜在分子机制.

References

[1]  53 Pelloux Y, Dilleen R, Economidou D, et al. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology, 2012, 37: 2505-2514
[2]  1 APA. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. DSM-5. Arlington: American Psychiatric Association, 2013
[3]  2 APA. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Text Revision. DSM-IV-TR. Arlington: American Psychiatric Association, 2000
[4]  3 Warner L A, Kessler R C, Hughes M, et al. Prevalence and correlates of drug use and dependence in the United States: Results from the National Comorbidity Survey. Arch Gen Psychiat, 1995, 52: 219-229
[5]  4 McBride W J, Murphy J M, Ikemoto S. Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res, 1999, 101: 129-152
[6]  5 Jonkman S, Pelloux Y, Everitt B J. Differential roles of the dorsolateral and midlateral striatum in punished cocaine seeking. J Neurosci, 2012, 32: 4645-4650
[7]  6 Martinez D, Saccone P A, Liu F, et al. Deficits in dopamine D2 receptors and presynaptic dopamine in heroin dependence: Commonalities and differences with other types of addiction. Biol Psychiatry, 2012, 71: 192-198
[8]  7 Volkow N D, Chang L, Wang G J, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: Association with metabolism in the orbitofrontal cortex. Am J Psychiatry, 2001, 158: 2015-2021
[9]  8 Volkow N D, Fowler J S, Wang G J, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 1993, 14: 169-177
[10]  45 Belin D, Mar A C, Dalley J W, et al. High impulsivity predicts the switch to compulsive cocaine-taking. Science, 2008, 320: 1352-1355
[11]  46 Besson M, Pelloux Y, Dilleen R, et al. Cocaine modulation of frontostriatal expression of Zif268, D2, and 5-HT2c receptors in high and low impulsive rats. Neuropsychopharmacology, 2013, 38: 1963-1973
[12]  47 Caprioli D, Hong Y T, Sawiak S J, et al. Baseline-dependent effects of cocaine pre-exposure on impulsivity and D2/3 receptor availability in the rat striatum: Possible relevance to the attention-deficit hyperactivity syndrome. Neuropsychopharmacology, 2013, 38: 1460-1471
[13]  48 Ersche K D, Jones P S, Williams G B, et al. Distinctive personality traits and neural correlates associated with stimulant drug use versus familial risk of stimulant dependence. Biol Psychiatry, 2013, 74: 137-144
[14]  49 Jupp B, Dalley J W. Behavioral endophenotypes of drug addiction: Etiological insights from neuroimaging studies. Neuropharmacology, 2014, 76: 487-497
[15]  50 Müller C P, Homberg J R. The role of serotonin in drug use and addiction. Behav Brain Res, 2015, 277: 146-192
[16]  51 Parsons L H, Koob G F, Weiss F. Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther, 1995, 274: 1182-1191
[17]  52 Wilson J M, Kalasinsky K S, Levey A I, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med, 1996, 2: 699-703
[18]  22 Willuhn I, Burgeno L M, Everitt B J, et al. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci USA, 2012, 109: 20703-20708
[19]  23 Poldrack R A, Packard M G. Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia, 2003, 41: 245-251
[20]  24 Ikemoto S. Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev, 2007, 56: 27-78
[21]  25 Belin D, Everitt B J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron, 2008, 57: 432-441
[22]  26 Lüscher C, Malenka R C. Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling. Neuron, 2011, 69: 650-663
[23]  27 Rasakham K, Schmidt H D, Kay K, et al. Synapse density and dendritic complexity are reduced in the prefrontal cortex following seven days of forced abstinence from cocaine self-administration. PLoS One, 2014, 9: e102524
[24]  28 Ersche K D, Barnes A, Jones P S, et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain, 2011, 134: 2013-2024
[25]  29 Ersche K D, Jones P S, Williams G B, et al. Abnormal brain structure implicated in stimulant drug addiction. Science, 2012, 335: 601-604
[26]  30 Goldstein R Z, Volkow N D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat Rev Neurosci, 2011, 12: 652-669
[27]  31 Everitt B J, Robbins T W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat Neurosci, 2005, 8: 1481-1489
[28]  32 Pelloux Y, Murray J E, Everitt B J. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur J Neurosci, 2013, 38: 3018-3026
[29]  33 Kalivas P W. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci, 2009, 10: 561-572
[30]  34 Peters J, Kalivas P W, Quirk G J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Memory, 2009, 16: 279-288
[31]  35 Chen B T, Yau H J, Hatch C, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature, 2013, 496: 359-362
[32]  36 Gabbott P L, Warner T A, Jays P R, et al. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol, 2005, 492: 145-177
[33]  37 Watts V J, Neve K A. Activation of type II adenylate cyclase by D2 and D4 but not D3 dopamine receptors. Mol Pharmacol, 1997, 52: 181-186
[34]  38 Caine S B, Thomsen M, Gabriel K I, et al. Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J Neurosci, 2007, 27: 13140-13150
[35]  39 Ramoa C P, Doyle S E, Lycas M D, et al. Diminished role of dopamine D1-receptor signaling with the development of an addicted phenotype in rats. Biol Psychiatry, 2014, 76: 8-14
[36]  40 Volkow N, Fowler J, Wang G, et al. Imaging dopamine's role in drug abuse and addiction. Neuropharmacology, 2009, 56: 3-8
[37]  41 Lobo M K, Nestler E J. The striatal balancing act in drug addiction: Distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat, 2011, 5: 41
[38]  42 Bock R, Shin J H, Kaplan A R, et al. Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci, 2013, 16: 632-638
[39]  43 Verdejo-Garcia A, Lawrence A J, Clark L. Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev, 2008, 32: 777-810
[40]  44 Dalley J W, Fryer T D, Brichard L, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 2007, 315: 1267-1270
[41]  9 Koob G F, Ahmed S H, Boutrel B, et al. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev, 2004, 27: 739-749
[42]  10 Tiffany S T, Carter B L. Is craving the source of compulsive drug use? J Psychopharmacol, 1998, 12: 23-30
[43]  11 Vanderschuren L J, Di Ciano P, Everitt B J. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci, 2005, 25: 8665-8670
[44]  12 Vanderschuren L J, Everitt B J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science, 2004, 305: 1017-1019
[45]  13 Everitt B J. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories—indications for novel treatments of addiction. Eur J Neurosci, 2014, 40: 2163-2182
[46]  14 Deroche-Gamonet V, Belin D, Piazza P V. Evidence for addiction-like behavior in the rat. Science, 2004, 305: 1014-1017
[47]  15 Zapata A, Minney V L, Shippenberg T S. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci, 2010, 30: 15457-15463
[48]  16 Belin D, Belin-Rauscent A, Murray J E, et al. Addiction: Failure of control over maladaptive incentive habits. Curr Opin Neurobiol, 2013, 23: 564-572
[49]  17 Ito R, Dalley J W, Howes S R, et al. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci, 2000, 20: 7489-7495
[50]  18 Di Ciano P, Everitt B J. Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci, 2004, 24: 7167-7173
[51]  19 Porrino L J, Lyons D, Smith H R, et al. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci, 2004, 24: 3554-3562
[52]  20 Corbit L H, Chieng B C, Balleine B W. Effects of repeated cocaine exposure on habit learning and reversal by N-acetylcysteine. Neuropsychopharmacology, 2014, 39: 1893-1901
[53]  21 Ito R, Dalley J W, Robbins T W, et al. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci, 2002, 22: 6247-6253

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133