全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

激光诱发疼痛的神经电生理特征及其应用

DOI: 10.1360/N972014-01012, PP. 1150-1159

Keywords: 疼痛,脑电,激光诱发电位,神经振荡信号

Full-Text   Cite this paper   Add to My Lib

Abstract:

疼痛是大脑编码和处理伤害性刺激,避免潜在的或实际的组织损伤的一种保护功能.人体内传导伤害性信息的神经纤维主要有Ad和C纤维.伤害性信息经过这两类纤维的传导和大脑结构的多重加工,最终产生人体的一次快疼痛和二次慢疼痛.较强烈的激光辐射热脉冲可选择性激活皮肤浅表层中的伤害性游离神经末梢,诱发脑电(electroencephalography,EEG)活动的变化,即激光诱发电位(laser-evokedpotentials,LEPs).至今,研究者共挖掘出Ad-LEPs的6个稳定成分,即时域上的Ad-N1,Ad-N2,Ad-P2,Ad-P4波,时频域上神经振荡节律成分alpha频段的事件相关去同步化(event-relateddesynchronization,α-ERD)和gamma频段的事件相关同步化(event-relatedsynchronization,γ-ERS).与此同时,研究者优化了C-LEPs提取的实验范式和参数,获得了2个稳定成分,即时域上的C-N2,C-P2波.本文详述了LEPs相关的神经电生理特征及其认知功能.LEPs既能帮助我们探究伤害性感觉输入的外周和中枢加工机制,在疼痛临床研究中有重要价值,也能为某些基础研究(如老龄化问题和社会认知等)提供新的手段.

References

[1]  1 Merskey H, Bogduk N. Task force on taxonomy of the international association for the study of pain. In: Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definition of Pain Terms. Seattle: Iasp, 1994
[2]  2 Demyttenaere K, Bruffaerts R, Lee S, et al. Mental disorders among persons with chronic back or neck pain: Results from the world mental health surveys. Pain, 2007, 129: 332-342
[3]  3 Moriarty O, McGuire B E, Finn D P. The effect of pain on cognitive function: A review of clinical and preclinical research. Prog Neurobiol, 2011, 93: 385-404
[4]  4 Lewis T, Pochin E. The double pain response of the human skin to a single stimulus. Clin Sci, 1937, 3: 67-76
[5]  5 Treede R D, Kief S, H?lzer T, et al. Late somatosensory evoked cerebral potentials in response to cutaneous heat stimuli. Electroencephalogr Clin Neurophysiol, 1988, 70: 429-441
[6]  6 Iannetti G, Truini A, Romaniello A, et al. Evidence of a specific spinal pathway for the sense of warmth in humans. J Neurophysiol, 2003, 89: 562-570
[7]  7 Carmon A, Mor J, Goldberg J. Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res, 1976, 25: 103-107
[8]  8 Hu L, Valentini E, Zhang Z G, et al. The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. NeuroImage, 2014, 84: 383-393
[9]  9 Gross J, Schnitzler A, Timmermann L, et al. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol, 2007, 5: 133
[10]  10 Hauck M, Lorenz J, Engel A K. Attention to painful stimulation enhances γ-band activity and synchronization in human sensorimotor cortex. J Neurosci, 2007, 27: 9270-9277
[11]  11 Hu L, Peng W, Valentini E, et al. Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. J Pain, 2013, 14: 89-99
[12]  12 Hu L, Cai M, Xiao P, et al. Human brain responses to concomitant stimulation of Ad and C nociceptors. J Neurosci, 2014, 34: 11439-11451
[13]  13 Bromm B, Treede R. Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Human Neurobiol, 1983, 3: 33-40
[14]  14 Baumg?rtner U, Cruccu G, Iannetti G D, et al. Laser guns and hot plates. Pain, 2005, 116: 1-3
[15]  15 Iannetti G D, Zambreanu L, Tracey I. Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J Physiol, 2006, 577: 235-248
[16]  16 Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: From dipoles to functional significance. Clin Neurophysiol, 2003, 33: 279-292
[17]  17 Valentini E, Hu L, Chakrabarti B, et al. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. NeuroImage, 2012, 59: 1571-1581
[18]  18 Iannetti G, Zambreanu L, Cruccu G, et al. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience, 2005, 131: 199-208
[19]  19 Cruccu G, Aminoff M, Curio G, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol, 2008, 119: 1705-1719
[20]  20 Treede R D, Lorenz J, Baumg?rtner U. Clinical usefulness of laser-evoked potentials. Clin Neurophysiol, 2003, 33: 303-314
[21]  21 Kunde V, Treede R D. Topography of middle-latency somatosensory evoked potentials following painful laser stimuli and non-painful electrical stimuli. Electroencephalogr Clin Neurophysiol (Evoked Potentials Section), 1993, 88: 280-289
[22]  22 Hu L, Mouraux A, Hu Y, et al. A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage, 2010, 50: 99-111
[23]  23 Tarkka I, Treede R. Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol, 1993, 10: 513-519
[24]  24 Bromm B, Lorenz J. Neurophysiological evaluation of pain. Electroencephalogr Clin Neurophysiol, 1998, 107: 227-253
[25]  25 Lorenz J, Garcia-Larrea L. Contribution of attentional and cognitive factors to laser evoked brain potentials. Clin Neurophysiol, 2003, 33: 293-301
[26]  26 Legrain V, Bruyer R, Guérit J M, et al. Nociceptive processing in the human brain of infrequent task-relevant and task-irrelevant noxious stimuli. A study with event-related potentials evoked by CO2 laser radiant heat stimuli. Pain, 2003, 103: 237-248
[27]  27 Legrain V, Guérit J M, Bruyer R, et al. Attentional modulation of the nociceptive processing into the human brain: Selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain, 2002, 99: 21-39
[28]  28 Mouraux A, Iannetti G D. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol, 2009, 101: 3258-3269
[29]  29 Ronga I, Valentini E, Mouraux A, et al. Novelty is not enough: Laser-evoked potentials are determined by stimulus saliency, not absolute novelty. J Neurophysiol, 2013, 109: 692-701
[30]  30 Iannetti G D, Hughes N P, Lee M C, et al. Determinants of laser-evoked EEG responses: Pain perception or stimulus saliency? J Neurophysiol, 2008, 100: 815-828
[31]  31 Downar J, Crawley A P, Mikulis D J, et al. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci, 2000, 3: 277-283
[32]  32 Mouraux A, Guerit J M, Plaghki L. Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between Ad-and C-fibre afferent volleys. Clin Neurophysiol, 2003, 114: 710-722
[33]  33 Mouraux A, Iannetti G D. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging, 2008, 26: 1041-1054
[34]  34 Ohara S, Crone N, Weiss N, et al. Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans. Clin Neurophysiol, 2004, 115: 1641-1652
[35]  35 Pfurtscheller G, Lopes da Silva F. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol, 1999, 110: 1842-1857
[36]  36 Rodriguez E, George N, Lachaux J P, et al. Perception's shadow: Long-distance synchronization of human brain activity. Nature, 1999, 397: 430-433
[37]  37 Tallon-Baudry C, Bertrand O, Wienbruch C, et al. Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human. Neuroreport, 1997, 8: 1103-1107
[38]  38 Hu L, Xiao P, Zhang Z, et al. Single-trial time-frequency analysis of electrocortical signals: Baseline correction and beyond. NeuroImage, 2014, 84: 876-887
[39]  39 Legrain V, Iannetti G D, Plaghki L, et al. The pain matrix reloaded: A salience detection system for the body. Prog Neubiol, 2011, 93: 111-124
[40]  40 Iannetti G D, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res, 2010, 205: 1-12
[41]  41 Zhang Z, Hu L, Hung Y, et al. Gamma-band oscillations in the primary somatosensory cortex—A direct and obligatory correlate of subjective pain intensity. J Neurosci, 2012, 32: 7429-7438
[42]  42 Schulz E, Tiemann L, Schuster T, et al. Neurophysiological coding of traits and states in the perception of pain. Cereb Cortex, 2011, 21: 2408-2414
[43]  43 Romei V, Brodbeck V, Michel C, et al. Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex, 2008, 18: 2010-2018
[44]  44 Yordanova J, Kolev V, Polich J. P300 and alpha event-related desynchronization (ERD). Psychophysiology, 2001, 38: 143-152
[45]  45 Grabner R, Fink A, Stipacek A, et al. Intelligence and working memory systems: Evidence of neural efficiency in alpha band ERD. Cogn Brain Res, 2004, 20: 212-225
[46]  46 Kolev V, Yordanova J, Schürmann M, et al. Increased frontal phase-locking of event-related alpha oscillations during task processing. Int J Psychophysiol, 2001, 39: 159-165
[47]  47 Ploner M, Gross J, Timmermann L, et al. Pain suppresses spontaneous brain rhythms. Cereb Cortex, 2006, 16: 537-540
[48]  48 Ploner M, Gross J, Timmermann L, et al. Oscillatory activity reflects the excitability of the human somatosensory system. NeuroImage, 2006, 32: 1231-1236
[49]  49 Magerl W, Ali Z, Ellrich J, et al. C-and Ad-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain, 1999, 82: 127-137
[50]  50 Opsommer E, Weiss T, Plaghki L, et al. Dipole analysis of ultralate (C-fibres) evoked potentials after laser stimulation of tiny cutaneous surface areas in humans. Neurosci Lett, 2001, 298: 41-44
[51]  51 Towell A, Purves A, Boyd S. CO2 laser activation of nociceptive and non-nociceptive thermal afferents from hairy and glabrous skin. Pain, 1996, 66: 79-86
[52]  52 Mouraux A, Plaghki L. Are the processes reflected by late and ultra-late laser evoked potentials specific of nociception? Suppl Clin Neurophysiol, 2006, 59: 197-204
[53]  53 Qiu Y, Inui K, Wang X, et al. Effects of attention, distraction and sleep on CO2 laser evoked potentials related to C-fibers in humans. Clin Neurophysiol, 2002, 113: 1579-1585
[54]  54 Valeriani M, Restuccia D, Le Pera D, et al. Attention-related modifications of ultra-late CO2 laser evoked potentials to human trigeminal nerve stimulation. Neurosci Lett, 2002, 329: 329-333
[55]  55 Bromm B, Neitzel H, Tecklenburg A, et al. Evoked cerebral potential correlates of C-fibre activity in man. Neurosci Lett, 1983, 43: 109-114
[56]  56 Cruccu G, Pennisi E, Truini A, et al. Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain, 2003, 126: 2246-2256
[57]  57 Treede R D, Cole J D. Dissociated secondary hyperalgesia in a subject with a large-fibre sensory neuropathy. Pain, 1993, 53: 169-174
[58]  58 Bragard D, Chen A, Plaghki L. Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci Lett, 1996, 209: 81-84
[59]  59 Ochoa J, Mair W. The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells. Acta Neuropathol, 1968, 13: 197-216
[60]  60 Jankovski A, Plaghki L, Mouraux A. Reliable EEG responses to the selective activation of C-fibre afferents using a temperature- controlled infrared laser stimulator in conjunction with an adaptive staircase algorithm. Pain, 2013, 154: 1578-1587
[61]  61 van de Wassenberg W, Kruizinga W, van der Hoeven J, et al. Multichannel recording of tibial-nerve somatosensory evoked potentials. Clin Neurophysiol, 2008, 38: 277-288
[62]  62 Van de Wassenberg W, Van der Hoeven J, Leenders K, et al. Multichannel recording of median nerve somatosensory evoked potentials. Clin Neurophysiol, 2008, 38: 9-21
[63]  63 Baumg?rtner U, Vogel H, Ellrich J, et al. Brain electrical source analysis of primary cortical components of the tibial nerve somatosensory evoked potential using regional sources. Electroencephalogr Clin Neurophysiol (Evoked Potentials Section), 1998, 108: 588-599
[64]  64 Hu L, Zhang Z, Hu Y. A time-varying source connectivity approach to reveal human somatosensory information processing. NeuroImage, 2012, 62: 217-228
[65]  65 Kany C, Treede R D. Median and tibial nerve somatosensory evoked potentials: Middle-latency components from the vicinity of the secondary somatosensory cortex in humans. Electroencephalogr Clin Neurophysiol (Evoked Potentials Section), 1997, 104: 402-410
[66]  66 Shimojo M, Svensson P, Arendt-Nielsen L, et al. Dynamic brain topography of somatosensory evoked potentials and equivalent dipoles in response to graded painful skin and muscle stimulation. Brain Topogr, 2000, 13: 43-58
[67]  67 Blatow M, Nennig E, Durst A, et al. fMRI reflects functional connectivity of human somatosensory cortex. NeuroImage, 2007, 37: 927-936
[68]  68 Knudsen E I. Fundamental components of attention. Annu Rev Neurosci, 2007, 30: 57-78
[69]  69 Mesulam M M. From sensation to cognition. Brain, 1998, 121: 1013-1052
[70]  70 Rutkove S B, Blum A S. The Clinical Neurophysiology Primer. Totowa: Humana Press, 2007
[71]  71 Kemp J, Després O, Pebayle T, et al. Age-related decline in thermal adaptation capacities: An evoked potentials study. Psychophysiology, 2014, 51: 539-545
[72]  72 Kenney W L, Munce T A. Aging and human temperature regulation. J Appl Physiol, 2003, 95: 2598-2603
[73]  73 Van Someren E J, Raymann R J, Scherder E J, et al. Circadian and age-related modulation of thermoreception and temperature regulation: Mechanisms and functional implications. Ageing Res Rev, 2002, 1: 721-778
[74]  83 Lorenz J. Hyperalgesia or hypervigilance? An evoked potential approach to the study of fibromyalgia syndrome. Zeitschrift für Rheumatologie, 1998, 57: 19-22
[75]  84 Lorenz J, Beck H, Bromm B. Cognitive performance, mood and experimental pain before and during morphine-induced analgesia in patients with chronic non-malignant pain. Pain, 1997, 73: 369-375
[76]  74 Yu H, Hu J, Hu L, et al. The voice of conscience: Neural bases of interpersonal guilt and compensation. Soc Cogn Affect Neur, 2014, 9: 1150-1158
[77]  75 Hatem S, Plaghki L, Mouraux A. How response inhibition modulates nociceptive and non-nociceptive somatosensory brain-evoked potentials. Clin Neurophysiol, 2007, 118: 1503-1516
[78]  76 Martini M, Valentini E, Aglioti S M. Emotional conflict in a model modulates nociceptive processing in an onlooker: A laser-evoked potentials study. Exp Brain Res, 2013, 225: 237-245
[79]  77 Stancak A, Fallon N. Emotional modulation of experimental pain: A source imaging study of laser evoked potentials. Front Hum Neurosci, 2013, 7: 552
[80]  78 Haanp?? M, Attal N, Backonja M, et al. Neupsig guidelines on neuropathic pain assessment. Pain, 2011, 152: 14-27
[81]  79 Cruccu G, Leandri M, Iannetti G, et al. Small-fiber dysfunction in trigeminal neuralgia carbamazepine effect on laser-evoked potentials. Neurology, 2001, 56: 1722-1726
[82]  80 Cruccu G, Romaniello A, Amantini A, et al. Assessment of trigeminal small-fiber function: Brain and reflex responses evoked by CO2-laser stimulation. Muscle Nerve, 1999, 22: 508-516
[83]  81 Tinazzi M, Valeriani M, Squintani G, et al. Nociceptive pathway function is normal in cervical dystonia: A study using laser-evoked potentials. J Neurol, 2012, 259: 2060-2066
[84]  82 Lorenz J, Grasedyck K, Bromm B. Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroencephalogr Clin Neurophysiol (Evoked Potentials Section), 1996, 100: 165-168
[85]  85 Vassal F, Créac'h C, Convers P, et al. Modulation of laser-evoked potentials and pain perception by transcutaneous electrical nerve stimulation (TENS): A placebo-controlled study in healthy volunteers. Clin Neurophysiol, 2013, 124: 1861-1867
[86]  86 Risti? D, Ellrich J. Innocuous peripheral nerve stimulation shifts stimulus-response function of painful laser stimulation in man. Neuromodulation, 2013
[87]  87 de Tommaso M, Navarro J, Ricci K, et al. Pain in prolonged disorders of consciousness: Laser evoked potentials findings in patients with vegetative and minimally conscious states. Brain Injury, 2013, 27: 962-972
[88]  88 Cruse D, Owen A M. Consciousness revealed: New insights into the vegetative and minimally conscious states. Curr Opin Neurol, 2010, 23: 656-660
[89]  89 Colloca L, Benedetti F. Placebos and painkillers: Is mind as real as matter? Nat Rev Neurosci, 2005, 6: 545-552
[90]  90 Hoffman G A, Harrington A, Fields H L. Pain and the placebo: What we have learned. Perspect Biol Med, 2005, 48: 248-265
[91]  91 Price D D, Finniss D G, Benedetti F. A comprehensive review of the placebo effect: Recent advances and current thought. Annu Rev Psychol, 2008, 59: 565-590
[92]  92 Stewart-Williams S, Podd J. The placebo effect: Dissolving the expectancy versus conditioning debate. Psychol Bull, 2004, 130: 324-340
[93]  93 Colloca L, Tinazzi M, Recchia S, et al. Learning potentiates neurophysiological and behavioral placebo analgesic responses. Pain, 2008, 139: 306-314
[94]  94 Watson A, El-Deredy W, Vogt B A, et al. Placebo analgesia is not due to compliance or habituation: EEG and behavioural evidence. Neuroreport, 2007, 18: 771-775
[95]  95 Wager T D, Matre D, Casey K L. Placebo effects in laser-evoked pain potentials. Brain Behav Immun, 2006, 20: 219-230

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133