全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

药用植物转录因子AP2/ERF研究与展望

DOI: 10.1360/N972014-00697, PP. 1272-1284

Keywords: 转录因子,AP2/ERF,药用植物,活性成分,生长发育

Full-Text   Cite this paper   Add to My Lib

Abstract:

药用植物作为中药和世界传统药物的主要来源,面临着资源稀缺和活性成分含量低等问题.通过转录水平调控发育相关基因及活性成分合成途径酶基因表达是实现定向、高效调节药用植物生长及活性成分合成的有效手段之一.因此,近年来转录因子调节药用植物发育及活性成分合成的研究备受关注.转录因子AP2/ERF家族是植物最大转录因子家族之一,家族成员均包含保守AP2结构域,根据结构域数量和识别序列不同,AP2/ERF家族被分为5个亚家族AP2(APETALA2),ERF(ethylene-responsivefactor),DREB(dehydration-responsiveelementbindingproteins),RAV(relatedtoABI3/VP1)和Soloist.本文重点综述转录因子AP2/ERF调控药用植物活性成分生物合成、发育、胁迫响应的研究进展,阐述了转录因子AP2/ERF调控靶基因和自身受到调控的作用机制,同时总结转录因子AP2/ERF研究方法,提出组学和生物信息学方法成为分离、筛选转录因子,预测转录因子功能的强大工具,为分析、预测、验证药用植物AP2/ERF家族成员的功能和阐明AP2/ERF的调控机制提供理论基础和方法指导.转录因子AP2/ERF的功能研究及其作用机制的揭示将有助于利用代谢调控手段提高药用植物活性成分产量,有利于药用植物优良品种的培育,为满足人们对天然药物的需求奠定基础.

References

[1]  70 Shoji T, Kajikawa M, Hashimoto T. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell, 2010, 22: 3390-3409
[2]  71 Sears M T, Zhang H, Rushton P J, et al. NtERF32: A non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Mol Biol, 2014, 84: 49-66
[3]  72 De Boer K, Tilleman S, Pauwels L, et al. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J, 2011, 66: 1053-1065
[4]  73 Guo Z J, Chen X J, Wu X L, et al. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol, 2004, 55: 607-618
[5]  74 Fischer U, Droge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact, 2004, 17: 1162-1171
[6]  75 Lee J H, Kim D M, Lee J H, et al. Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta, 2005, 222: 211-224
[7]  76 Liu W Y, Chiou S J, Ko C Y, et al. Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. J Plant Physiol, 2011, 168: 375-381
[8]  77 Li C. Identification and characterization of transcription factor OjERF gene from Ophiopogpn japonicus (in Chinese). Doctor Dissertation. Beijing: Beijing Forestry University, 2013 [李聪. 麦冬OjERF基因的克隆与功能研究. 博士学位论文. 北京: 北京林业大学,
[9]  78 Liu W J. Regulation mechanism of an ethylene response factor gene, ThERF1, from Tamarix hispida in response to high-salt sress (in Chinese). Doctor Dissertation. Harbin: Northeast Forestry University, 2013 [刘文进. 柽柳乙烯响应因子ThERF1基因应答高盐胁迫的调控机理. 博士学位论文. 哈尔滨: 东北林业大学,
[10]  79 Asamizu E, Shimoda Y, Kouchi H, et al. A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiol, 2008, 147: 2030-2040
[11]  80 Tang M, Sun J, Liu Y, et al. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol, 2007, 63: 419-428
[12]  81 Zhou C, Zhao S J, Hu Z B. Periwinkle secondary molecular mechanism of transcriptional regulation of metabolic (in Chinese). Plant Physiol J, 2010, 3: 284-290 [周晨, 赵淑娟, 胡之璧. 长春花次生代谢转录调控的分子机制. 植物生理学通讯, 2010, 3: 284-
[13]  82 Peebles C A, Hughes E H, Shanks J V, et al. Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng, 2009, 11: 76-86
[14]  83 Pan Q, Wang Q, Yuan F, et al. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One, 2012, 7: e43038
[15]  84 Wang C T, Liu H, Gao X S, et al. Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep, 2010, 29: 887-894
[16]  85 van der Fits L, Memelink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J, 2001, 25: 43-53
[17]  86 Suttipanta N, Pattanaik S, Gunjan S, et al. Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta, 2007, 1769: 139-148
[18]  87 De Sutter V, Vanderhaeghen R, Tilleman S, et al. Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J, 2005, 44: 1065-1076
[19]  88 Chen L R, Chen Y J, Lee C Y, et al. MeJA-induced transcriptional changes in adventitious roots of Bupleurum kaoi. Plant Sci, 2007, 173: 12-24
[20]  89 Zhang J F, Quan R D, Huang R F. Studies on structure and function of repressors with EAR motif (in Chinese). J Agric Sci Technol, 2011, 13: 53-57 [张健飞, 权瑞党, 黄荣峰. EAR转录抑制子结构及功能的研究. 中国农业科技导报, 2011, 4: 53-
[21]  90 Tiwari S B, Belachew A, Ma S F, et al. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. Plant J, 2012, 70: 855-865
[22]  91 Ohta M, Matsui K, Hiratsu K, et al. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13: 1959-1968
[23]  93 Seo P J, Park M J, Park C M. Alternative splicing of transcription factors in plant responses to low temperature stress: Mechanisms and functions. Planta, 2013, 237: 1415-1424
[24]  94 Matsukura S, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics, 2010, 283: 185-196
[25]  95 Lyzenga W J, Stone S L. Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot, 2012, 63: 599-616
[26]  96 Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819: 86-96
[27]  97 Zhang G, Chen M, Chen X, et al. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot, 2008, 59: 4095-4107
[28]  98 Xu W, Li F, Ling L, et al. Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genomics, 2013, 14: 785
[29]  99 Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics, 2013, 14: 573
[30]  100 Wang C Q, Kong W W, Li J. Current research method of transcription factors in plants (in Chinese). Lett Biotechnol, 2013, 24: 118-123 [王传琦, 孔稳稳, 李晶. 植物转录因子最新研究方法. 生物技术通讯, 2013, 1: 118-
[31]  101 Luo H, Zhu Y, Song J, et al. Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Physiol Plant, 2014, 152: 241-255
[32]  102 Chen S L, Zhu X X, Li C F, et al. Genomics and synthetic biology of traditional Chinese medicine (in Chinese). Acta Pharm Sin, 2012, 47: 1070-1078 [陈士林, 朱孝轩, 李春芳, 等. 中药基因组学与合成生物学. 药学学报, 2012, 8: 1070-
[33]  1 Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell, 1991, 65: 991-1002
[34]  2 Kunst L, Klenz J E, Martinez-Zapater J, et al. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell, 1989, 1: 1195-1208
[35]  3 Shannon S, Meeks-Wagner D R. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell, 1993, 5: 639-655
[36]  4 Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytol, 2013, 199: 639-649
[37]  5 Yamasaki K, Kigawa T, Seki M, et al. DNA-binding domains of plant-specific transcription factors: Structure, function, and evolution. Trends Plant Sci, 2013, 18: 267-276
[38]  6 Houston K, McKim S M, Comadran J, et al. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci USA, 2013, 110: 16675-16680
[39]  7 Woo H R, Kim J H, Kim J, et al. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot, 2010, 61: 3947-3957
[40]  8 Jofuku K D, den Boer B G, van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6: 1211-1225
[41]  39 Buttner M, Singh K B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci USA, 1997, 94: 5961-5966
[42]  40 Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076-7081
[43]  41 Shigyo M, Ito M. Analysis of gymnosperm two-AP2-domain-containing genes. Dev Genes Evol, 2004, 214: 105-114
[44]  42 Kim S, Soltis P S, Wall K, et al. Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol, 2006, 23: 107-120
[45]  43 Nole-Wilson S, Krizek B A. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res, 2000, 28: 4076-4082
[46]  44 Krizek B A. AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res, 2003, 31: 1859-1868
[47]  45 Xue G P, Loveridge C W. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J, 2004, 37: 326-339
[48]  46 Niu X, Helentjaris T, Bate N J. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell, 2002, 14: 2565-2575
[49]  47 Luo G Y, Ye L F, Chen X B. Research progress of Arabidopsis B3 transcription factor gene superfamily (in Chinese). Chem Life, 2013, 33: 287-293 [罗光宇, 叶玲飞, 陈信波. 拟南芥B3转录因子基因超家族. 生命的化学, 2013, 3: 287-
[50]  48 Magnani E, Sjolander K, Hake S. From endonucleases to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell, 2004, 16: 2265-2277
[51]  9 Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173-182
[52]  10 Aya K, Hobo T, Sato-Izawa K, et al. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol, 2014, 55: 897-912
[53]  11 Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev, 1998, 12: 1145-1154
[54]  12 Zhuang J, Anyia A, Vidmar J, et al. Discovery and expression assessment of the AP2-like genes in Hordeum vulgare. Acta Physiol Plant, 2011, 33: 1639-1649
[55]  13 Zhou J, Tang X, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16: 3207-3218
[56]  14 Menke F L, Champion A, Kijne J W, et al. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J, 1999, 18: 4455-4463
[57]  15 Yu Z X, Li J X, Yang C Q, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant, 2012, 5: 353-365
[58]  16 Dai Y, Qin Q, Dai D, et al. Isolation and characterization of a novel cDNA encoding methyl jasmonate-responsive transcription factor TcAP2 from Taxus cuspidata. Biotechnol Lett, 2009, 31: 1801-1809
[59]  17 Ansari M T, Saify Z S, Sultana N, et al. Malaria and artemisinin derivatives: An updated review. Mini Rev Med Chem, 2013, 13: 1879-1902
[60]  18 Moudi M, Go R, Yien C Y, et al. Vinca Alkaloids. Int J Prev Med, 2013, 4: 1231-1235
[61]  19 Xu S, Liu P. Tanshinone II-A: New perspectives for old remedies. Expert Opin Ther Pat, 2013, 23: 149-153
[62]  20 Liu Q, Zhang G Y, Chen S Y. The structure and regulation of plant transcription factors (in Chinese). Chin Sci Bull (Chinese Ver), 2000, 45: 1465-1474 [刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000, 45: 1465-
[63]  21 Yan X, Zhang L, Chen B, et al. Functional identification and characterization of the Brassica napus transcription factor gene BnAP2, the ortholog of Arabidopsis thaliana APETALA2. PLoS One, 2012, 7: e33890
[64]  22 Zhang P, Yang P, Zhang Z, et al. Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2. Gene, 2014, 536: 123-128
[65]  23 Zhang X X, Tang Y J, Ma Q B, et al. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One, 2013, 8: e83011
[66]  24 Tang M, Liu X, Deng H, et al. Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci, 2011, 181: 623-631
[67]  25 Park J M, Park C J, Lee S B, et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13: 1035-1046
[68]  26 McGrath K C, Dombrecht B, Manners J M, et al. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol, 2005, 139: 949-959
[69]  27 Zhang H, Zhang D, Chen J, et al. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825-834
[70]  28 Lai Y, Dang F, Lin J, et al. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiol Biochem, 2013, 62: 70-78
[71]  29 Dong J, Wang X, Wang K, et al. Isolation and characterization of a gene encoding an ethylene responsive factor protein from Ceratoides arborescens. Mol Biol Rep, 2012, 39: 1349-1357
[72]  30 Zhang H, Liu W, Wan L, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res, 2010, 19: 809-818
[73]  31 Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 1999, 27: 470-478
[74]  32 Li C W, Su R C, Cheng C P, et al. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol, 2011, 156: 213-227
[75]  33 Zhao L, Hao D, Chen L, et al. Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants. J Exp Bot, 2012, 63: 3257-3270
[76]  34 Matias-Hernandez L, Aguilar-Jaramillo A E, Marin-Gonzalez E, et al. RAV genes: Regulation of floral induction and beyond. Ann Bot, 2014, doi: 10.1093/aob/mcu069
[77]  35 Giri M K, Swain S, Gautam J K, et al. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. J Plant Physiol, 2014, 171: 860-867
[78]  36 Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432
[79]  37 Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009
[80]  38 Allen M D, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496
[81]  49 Wuitschick J D, Lindstrom P R, Meyer A E, et al. Homing endonucleases encoded by germ line-limited genes in Tetrahymena thermophila have APETELA2 DNA binding domains. Eukaryot Cell, 2004, 3: 685-694
[82]  50 Balaji S, Babu M M, Iyer L M, et al. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res, 2005, 33: 3994-4006
[83]  51 Moure C M, Gimble F S, Quiocho F A. Crystal structure of the intein homing endonuclease PI-SceI bound to its recognition sequence. Nat Struct Biol, 2002, 9: 764-770
[84]  52 Shen B W, Landthaler M, Shub D A, et al. DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol, 2004, 342: 43-56
[85]  53 Flick K E, Jurica M S, Monnat R J Jr. et al. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature, 1998, 394: 96-101
[86]  54 Zhou Y, Lu D, Li C, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION 1. Plant Cell, 2012, 24: 1034-1048
[87]  55 Akhtar M, Jaiswal A, Taj G, et al. DREB1/CBF transcription factors: Their structure, function and role in abiotic stress tolerance in plants. J Genet, 2012, 91: 385-395
[88]  56 Sohn K H, Lee S C, Jung H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol, 2006, 61: 897-915
[89]  57 Shukla R K, Raha S, Tripathi V, et al. Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol, 2006, 142: 113-123
[90]  58 Liu Z, Gu C, Chen F, et al. Identification and expression of an APETALA2-like gene from Nelumbo nucifera. Appl Biochem Biotechnol, 2012, 168: 383-391
[91]  59 Luo H, Chen S, Jiang J, et al. The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height. J Plant Physiol, 2012, 169: 992-998
[92]  60 Wang L, Li Z, He C. Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. J Exp Bot, 2012, 63: 6457-6465
[93]  61 Morcillo F, Gallard A, Pillot M, et al. EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta, 2007, 226: 1353-1362
[94]  62 Dai Y L. Molecular cloning and characterization of AP2-type transcription factors involved in isoprenoid biosynthetic pathway of Taxus cuspidata (in Chinese). Doctor Dissertation. Shanghai: Fudan University, 2008 [戴怡龄. 红豆杉中与异戊二烯代谢途径相关的AP2类转录调控因子的克隆与功能研究. 博士学位论文. 上海: 复旦大学,
[95]  63 Li C, Guo M Y, Han L B. Overexpression of OjDREB gene increases tolerance to salt in transgenic tobacco (in Chinese). Acta Tab Sin, 2012, 18: 72-76 [李聪, 郭梦阳, 韩烈保. 转OjDREB基因提高烟草耐盐能力的研究. 中国烟草学报, 2012, 4: 72-
[96]  64 Sun J, Peng X, Fan W, et al. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene, 2014, 535: 140-149
[97]  65 Navarro M, Marque G, Ayax C, et al. Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot, 2009, 60: 2713-2724
[98]  66 Cong L, Chai T Y, Zhang Y X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem Biophys Res Commun, 2008, 371: 702-706
[99]  67 van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 2000, 289: 295-297
[100]  68 Lu X, Zhang L, Zhang F, et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol, 2013, 198: 1191-1202
[101]  69 Zhang W, Zou A, Miao J, et al. LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in Lithospermum erythrorhizon. Plant Biol (Stuttg), 2011, 13: 343-348
[102]  92 Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol, 2009, 50: 970-975

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133